
Volume 2012 | Issue 1 | Page 1

Research Article

Climbing the Steiner Tree—Sources of Active Information
in a Genetic Algorithm for Solving the Euclidean Steiner
Tree Problem
Winston Ewert,1* William Dembski,2 Robert J. Marks II1

1 Department of Electrical and Computer Engineering, Baylor University, Waco, Texas, USA; 2 Discovery Institute, Seattle, Washington, USA

Abstract
Genetic algorithms are widely cited as demonstrating the power of natural selection to produce biological complexity.
In particular, the success of such search algorithms is said to show that intelligent design has no scientific value. Despite
their merits, genetic algorithms establish nothing of the sort. Such algorithms succeed not through any intrinsic prop-
erty of the search algorithm, but rather through incorporating sources of information derived from the programmer’s
prior knowledge. A genetic algorithm used to defend the efficacy of natural selection is Thomas’s Steiner tree algorithm.
This paper tracks the various sources of information incorporated into Thomas’s algorithm. Rather than creating informa-
tion from scratch, the algorithm incorporates resident information by restricting the set of solutions considered, introducing
selection skew to increase the power of selection, and adopting a structure that facilitates fortuitous crossover. Thomas’s
algorithm, far from exhibiting the power of natural selection, merely demonstrates that an intelligent agent, in this case a
human programmer, possesses the ability to incorporate into such algorithms the information necessary for successful search.

Cite as: Ewert W, Dembski W, Marks II RJ (2012) Climbing the Steiner tree—Sources of active information in a genetic algorithm for solving the Euclidean Steiner
tree problem. BIO-Complexity 2012(1):1-14. doi:10.5048/BIO-C.2012.1

Editor: Douglas Axe

Received: October 21, 2011; Accepted: March 6, 2012; Published: April 5, 2012

Copyright: © 2012 Ewert, Dembski, and Marks. This open-access article is published under the terms of the Creative Commons Attribution License, which
permits free distribution and reuse in derivative works provided the original author(s) and source are credited.

Notes: A Critique of this paper, when available, will be assigned doi:10.5048/BIO-C.2012.1.c.

* Email: evoinfo@winstonewert.com

INTRODUCTION
Genetic algorithms and simulations inspired by natural

section have been offered as evidence for—or even convinc-
ing proof of—the abilities of neo-Darwinian evolution [1-5].
These algorithms are search algorithms. With all such algo-
rithms, a question is posed, such as what is the best antenna
design, what is the shortest route through several cities, or what
is the most central meeting point. All of these questions admit
various approximate answers, but not all answers are equally
good. Indeed, some are better than others—for example one
route may be shorter than another, or one antenna design may
be more efficient. A search algorithm seeks the optimal answer
(ideally) or at least a reasonably good answer (usually) by evalu-
ating many possible candidate solutions. It can, for instance, try
many possible paths and use the results of each path to guide
which path it will try next. A genetic algorithm is a search algo-
rithm that uses procedures that mimic natural selection and
random mutation to determine which candidate solutions to
try next. Genetic algorithms have been applied successfully
to a wide variety of problems [6-8], thus demonstrating their

usefulness as a tool for conducting searches.
Given the obvious success of genetic algorithms that are pro-

posed to mimic natural selection, one might ask how anyone
questions the efficacy of Darwinian processes. If computer
simulations of evolution can conduct successful searches, surely
biological evolution can do so as well, some say. It may be, how-
ever, as advocates of intelligent design have argued, that such
algorithms succeed by incorporating information about the tar-
get [9,10]. This is sometimes misunderstood as the claim that
all such search algorithms work by sneaking the exact answer
into the algorithm. On this view, when a genetic algorithm
locates its target, it is only revealing that which has been cleverly
hidden in the algorithm, like a magician pulling a rabbit from a
hat. Certainly, some simulations such as Dawkin’s METHINKS
IT IS LIKE A WEASEL function this way [11,12].

Nevertheless, many simulations do not contain a fully articu-
lated solution hidden behind lines of code that can be readily
reconstructed by inspecting the program without running it.
Proponents of intelligent design admit this possibility, arguing

http://dx.doi.org/10.5048/BIO-C.2012.1
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5048/BIO-C.2012.1.c

Volume 2012 | Issue 1 | Page 2

Climbing the Steiner Tree

that such algorithms include information even when the solu-
tion has not been explicitly front-loaded into the simulation.
The algorithm need not contain the explicit solution that is
later found by running the algorithm. Rather, its code is front-
loaded with specialized information for how to find that solu-
tion. Instead of the explicit answer, the means by which the
eventual product can be found is front-loaded.

Imagine a bird-watcher who knows nothing about birds. He
spends his time searching for birds in places that are unlikely
to contain them, such as the grocery store, abandoned mines,
or the international space station. One might assist the bird-
watcher by telling him exactly where a bird can be found. But
he can also be assisted in more subtle ways. Informing him that
birds live in places like forests and not aboard space stations
assists him, even though he is not being provided the exact
coordinates of a bird.

The claim about genetic algorithms is not they have pro-
duced a hidden answer, like a bird-watcher using a precise set
of coordinates to locate a bird. Instead, the claim is that the
bird-watcher has been provided with details about the habitat
and behavior of birds. This information assists in his search,
enabling him to find the birds he wants to watch.

The Darwinist claim is that no such assistance is required.
Rather, natural selection is innately capable of solving any
biological problem that it faces. Analogously, a genetic algo-
rithm ought to be able to succeed given nothing more than the
description of the problem faced. It should not be necessary for
an intelligent agent to tune or direct the evolutionary process.
Any process so tuned is a teleological process, not a naturalistic
one. The argument from genetic algorithms depends on main-
taining the ateleological status [13].

Conservation of information theorems, such as the No
Free Lunch Theorems [14], place limitations on the abilities
of search algorithms. Any search algorithm uses resources to
try to find its target. Different algorithms exist, but as long as
they avoid searching the same place multiple times, given the
same resources they will have the same average performance.
As a result, excluding algorithms that visit the same place mul-
tiple times, no algorithm can be claimed to be superior to any
other algorithm [15-17]. At best, it can be superior over some
subset of all fitness functions. In consequence, observing that
evolutionary algorithms are search algorithms does nothing to
explain their success.

Genetic algorithms typically succeed because programmers
incorporate problem-specific knowledge into the search algo-
rithm. Various examples have been published in the literature.
Avida [4], a program purported to demonstrate evolution,
works by rewarding simpler versions of complex components
[18]. Dawkin’s “METHINKS IT IS LIKE A WEASEL” simu-
lation [1] works by providing the distance to a target phrase
[11]. Ev [3], another program purported to demonstrate evolu-
tion, works by providing the distance to a target along with
a biased genomic representation [12]. Such algorithms do not
demonstrate the abilities of undirected processes, but rather the
powerful combination of human intelligence and brute force
computing power.

The ID critic David Thomas openly disputes this assessment.
To defend the creative power of genetic algorithms, he has pre-
sented a genetic algorithm for solving the Steiner tree problem,
a well-known difficult computer science problem, in the journal
Skeptical Inquirer [19]. Further details of the genetic algorithm
are presented on the Panda’s Thumb blog [20]. The actual code
for the algorithm is given in the original Fortran [21] as well as
in a rewritten version in C++ [22]. The problem is similar to
that of building a road network between several cities. Based on
his algorithm’s success, Thomas claims that,

… two pillars of ID theory, “irreducible complex-
ity” and “complex specified information” [have been]
shown not to be beyond the capabilities of evolu-
tion, contrary to official ID dogma. [19]

In the conclusion of his Panda’s Thumb blog post, Thomas
issued a challenge to ID advocates:

If you contend that this algorithm works only by
sneaking in the answer (the Steiner shape) into the
fitness test, please identify the precise code snippet
where this frontloading is being performed.

The above quote shows that Thomas is under the misappre-
hension that intelligent design advocates claim that the actual
answer is encoded into the algorithm. This is not in fact what
intelligent design advocates claim, as will be shown later. Rather,
we say that success is due to prior knowledge being exploited to
produce active information in the search algorithm. Although
the code does not include the actual Steiner shape, it does
include a tuned algorithm for how to find the Steiner shape.

Thomas appears to admit the possibility of such fine-tuning,
but denies that he himself has done so [19]:

Now, I could have implemented a “Fitness Function”
that was designed to produce the formal Steiner
solution only. For example, I could have taken steps
to favor “shortest connectivity between all pairs of
fixed nodes,” or perhaps “junctions between three
segments meeting at 120-degree angles.” … But that
would have required “knowledge of the target” at
each and every step, and that was something I pur-
posely wanted to avoid.

While Thomas did not implement functions to favor either
of the particular properties mentioned in this quote, he has in
fact implemented algorithms that depend on knowledge of the
target, as we will show. In addition, in response to Thomas’s
challenge, we will identify the precise code snippets where the
frontloading is being performed.

Not all critics of intelligent design subscribe to the straw-
man that ID advocates think all search algorithms include their
answer, but instead provide more sophisticated arguments [5].
Discussing their arguments is outside the scope of this paper.
Nevertheless, our prior work [11, 12, 18] as well as this current
paper demonstrate by example that success is due to the active
information in the search algorithm.

Volume 2012 | Issue 1 | Page 3

Climbing the Steiner Tree

Background on the Steiner tree problem
The Steiner tree problem can be visualized as cities that need

to be connected by a highway system (Fig. 1). The problem
is to construct the road as inexpensively as possible. The most
straightforward approach would be to build highways between
the cities as depicted in Figure 1B. However, it is often pos-
sible to produce a shorter road system by having highway
interchanges outside of the cities. Figure 1C shows a highway
system where this is the case. For the purposes of this problem,
we ignore the actual travel time on the highway. We are only
interested in the cost of building the roads, which we assume
to have a fixed per kilometer construction cost. The goal of the
Steiner tree problem is to find the highway network that costs
the least amount to build.

Figure 1: The Steiner tree problem. Shown are (A) cities that need
to be connected by a highway system, (B) cities connected directly
to each other, and (C) cities connected through an interchange.
 doi:10.5048/BIO-C.2012.1.f1

Properly, this is the geometric or Euclidean Steiner tree prob-
lem. It is an NP-complete problem; however, a polynomial time
approximation algorithm exists [23]. This means that although
no efficient algorithm to find the optimal solution is believed to
exist, an efficient algorithm to find a good solution does exist.

Thomas is not the only one to solve Steiner tree problems
using genetic algorithms [24-26]. The problem has also been
attacked in the more general form of the graphical Steiner tree
problem [27,28], as well as in the rectilinear Steiner tree prob-
lem [29,30]. The various versions of the Steiner tree problem
differ in how they assign distances between the added inter-
changes and the cities.

All of these algorithms make use of the properties of the
Steiner tree problem in order to make it easier to solve. For
example, if the locations for the interchanges are known, figur-
ing out how to connect those interchanges in the cheapest way
is exactly the same as the minimum spanning tree problem which
can solved quickly by using Prim’s algorithm [31]. The number
of possible locations for the interchanges can also be reduced,
so that the algorithm does not have to consider as many inter-
changes. In the case of the rectilinear Steiner tree problem the
number of possible interchanges can actually be reduced to
be O(n) where n is the number of cities [30]. Each of these
algorithms makes use of the specific nature of the Steiner tree
problem in order to effectively solve it.

Jesus et al. [24] writes:

… the no-free-lunch theorems (NFL) are addressed
to the evolutionary algorithms, ensuring the hope-
lessness in [sic] the existence of a magic algorithm
to solve any problem, or in one that outperforms all
others. Unless there exists [sic] some suitable opera-
tors that are correlated to the features of the prob-
lem, there is no reason to believe the algorithm will
do better than a random search. Putting in other
terms, it is necessary to ‘tailor’ our genetic algorithm
to the [Euclidean Steiner Tree Problem], to became
[sic] useful in this context.

In other words, these algorithms are tuned to the Steiner tree
problem far more than just by describing the nature of the
problem in a fitness function. Rather they all make use of criti-
cal knowledge about good Steiner tree problem solutions in
order to find better solutions.

These other algorithms are solving Steiner tree problem
orders of magnitude more difficult than the ones considered
by Thomas. Thomas solves problems of five or six cities, while
other genetic algorithms handle 100 cities, and in one case as
many as 1000 cities. The difficulty of the problem scales expo-
nentially, making the size of the problem solved by the other
algorithms very impressive when compared to the small version
solved by Thomas’s genetic algorithm.

Definitions
Thomas’s algorithm. The “genome” used for the genetic algo-

rithm consists of three parts, shown in Figure 2, and described
below.

1.	 The number of interchanges:
This is an integer in the set {0,1,2,3,4}.

2.	 The coordinates of the interchanges:
Each interchange has an integral X and Y coordinate in
the set {0,1,2,…,999}. This part of the genome specifies
where the interchanges will be located. The coordinates
function like longitude and latitude to specify the exact
location of the interchange.

3.	 The connections between the cities and interchanges:
For each possible connection there is a Boolean value
indicating whether or not a connection should be made.
It is necessary to indicate which cities have highway
connections to which other cities and interchanges. For
each pair of cities or interchanges, there is a single value,
either ‘T’ or ‘F,’ that indicates whether or not a road is
built between those pairs of cities.

Figure 2: A depiction of the structure of the genome for Thomas’s genetic algorithm, split among the different components. Sizes of the differ-
ent sections are not to scale. The count is actually two symbols long, the coordinates are 24 symbols long, and the connections are 36 symbols long.
doi:10.5048/BIO-C.2012.1.f2

http://dx.doi.org/10.5048/BIO-C.2012.1.f1
http://dx.doi.org/10.5048/BIO-C.2012.1.f2

Volume 2012 | Issue 1 | Page 4

Climbing the Steiner Tree

This genome is of a fixed length, always containing the coor-
dinates and connections for the maximum number of inter-
changes. This simplifies the genetic algorithm because it not
necessary to implement deletion or insertion mutations. When
the number of interchanges is less than four, the additional data
is ignored as “junk DNA.”

The cost function for a solution is

	

	

(1)

where n is the number of nodes, cities plus interchanges, and

	

	

(2)

where Xi is the x-coordinate of node i and Yi is the y-coordinate
of node i. Ri,j = 1 if and only if there is a road between nodes i
and j.

If the roads are not connected such that it is impossible to
drive from one of the cities to any of the other cities, that solu-
tion is deemed incorrect. A very high cost, 100,000, is given to
the invalid solution to make sure it is selected against. As long
as the solution is connected properly, the cost of the solution
is simply the sum of the distance between the connected cities
and interchanges. This distance is calculated using the standard
Euclidean distance.

The search algorithm itself is a genetic algorithm. Each gen-
eration consists of 2000 members. A variant of roulette-wheel
selection is used with a skew factor to determine which mem-
bers of a population will become parents of the next generation.
The next generation is produced using single-point crossover
between two parents. One tenth of the population has three
point mutations applied to the genome. Elitism is also used,
preserving the best of one generation to the next.

Figure 3A shows the specific instance of the Steiner tree prob-
lem on which Thomas’s genetic algorithm was demonstrated.
All experiments in this paper and in the original presentation
of the algorithm are done using this problem. Thomas would
eventually demonstrate his algorithm on a six cities problem.
However, because much more detail is given in his description
of solving the five cities problem, that is where we are focusing.

Defining Performance. Every search algorithm terminates
with a solution that has a specific cost. The optimal solution has
the lowest cost; most solutions are not optimal. An algorithm
with good performance should produce a low cost solution with
a high probability. Performance is therefore presented as a graph
of the probability of a particular solution being the outcome of
a search process versus the cost of that solution. An algorithm
that performs well should have larger spikes at lower cost.

Defining Success. What does it mean for a search algorithm to
succeed? The actual question of what is deemed a success is arbi-
trary. Given the entire set Ω of possible solutions, some subset
of those is defined to be the target T. A search algorithm is

deemed a success if it produces a solution ∈ T. T can be defined
in any way suitable for the problem under consideration.

In an attempt to establish the success of his algorithm and the
difficulty of the problem being solved, Thomas points out that
there are a large number of possible solutions.

All together, there are about 7*1024+10 = 7*1034 pos-
sible organisms in the “hypervolume” - a large num-
ber indeed. [20]

Pointing out the large number of possible organisms, how-
ever, does not establish that the problem being solved is dif-
ficult. The actual number of distinct solutions is lower than
the total number of solutions, because the same solution can
be expressed in multiple ways. For example, the order of the
interchanges in the genome can reordered without changing
the cost. Additionally, the distribution of costs can be such that
it is easy to obtain a solution with a low cost.

We define three targets, each based on a certain cost thresh-
old. Following the original code and the description of Thomas,
all cost values are reported rounded down, keeping only the
integer part.

•	 Adequate

	 	 (3)

Any solution that costs less than 1246, in other words
the trivial solution depicted in Figure 3B.

•	 Good

	 	 (4)

Any solution at least as good as 1224. This is the solu-
tion that the genetic algorithm usually finds, as depicted
in Figure 3C.

Figure 3: The Steiner tree problem used by Thomas, and various
solutions. Shown are (A) the city configuration, (B) the minimum span-
ning tree or “trivial” solution, (C) the solution most commonly found by
Thomas’s algorithm with a cost of 1224, and (D) the optimal solution with
a cost of 1212. doi:10.5048/BIO-C.2012.1.f3

http://dx.doi.org/10.5048/BIO-C.2012.1.f3

Volume 2012 | Issue 1 | Page 5

Climbing the Steiner Tree

•	 Optimal

	 	 (5)

Any solution that has a cost of 1212. Thomas indicates
that this is the optimal solution [20], and we have
no reason to doubt it. An example is depicted in Fig-
ure 3D.

 In most cases, data for optimal solutions is not shown because
in most possible configurations the optimal solution was not
found in any of our Monte Carlo experiments (see Results).

Active Information. In order to numerically quantify the assis-
tance that this search algorithm received, we use the concept of
active information [9]. Active information is defined to be

	

 	 (6)

where q is the probability of the success of the search algo-
rithm and p is the probability of the success of a baseline search
algorithm. It measures how much more likely a search algo-
rithm is to succeed relative to a baseline search algorithm. Using
this measurement the performance of a search algorithm can be
quantified. The baseline is necessary so that we can have an idea
of the difficulty of the search algorithm according to some base
reference and do not regard algorithms which solve easy prob-
lems as wildly successful. A baseline search is typically taken to
be a single random guess at the answer.

RESULTS
The goal of our research was to determine what, if any, fine-

tuning was required in order to produce Thomas’s genetic
algorithm. Does the genetic algorithm have the ability to solve
the problem given only a description of the same? Or does the
genetic algorithm bear the marks of an algorithm written to
solve a particular problem and making use of prior knowledge
about that problem?

In order to accomplish this we implemented a version of
the algorithm based on the description given by Thomas [20].
However, the program derived from that description did not
reproduce the reported results. Careful reading of the provided
Fortran code showed that the description made a number of
omissions with respect to the algorithm actually implemented.
Thomas’s C++ follows the algorithm of the Fortran code in
most respects. As our results will show, some of these differ-
ences proved to have a significant effect on the performance of
the genetic algorithm.

It should be emphasized that fine-tuning genetic algorithms
is common practice. There is nothing unreasonable about the
practice. It is in fact necessary, and very useful for producing
results from genetic algorithms. Problems arise when attempt-
ing to draw inference from a fine-tuned simulation to non-fine-
tuned biological reality. We will demonstrate that the fine-tun-
ing is necessary to the success of the algorithm; consequently,
the results cannot be used to defend the success of search algo-
rithm in the absence of fine-tuning.

Comparing empirical performance
In what follows we will be comparing Thomas’s genetic algo-

rithm to that of a random query search. Data on the performance
of the search algorithm was obtained by Monte Carlo simula-
tion. In the case of genetic algorithms, we ran 5615 distinct
simulations, keeping track of how many times a particular
cost was found. In the case of random query searches, we ran
11,228,106,000 random queries to determine the empirical
probability distribution for the cost of a random solution. The
actual performance of a random query search was calculated by
using probability theory and this empirical distribution.

Figure 4 shows the performance of the genetic algorithm pre-
sented by Thomas as compared to a random query algorithm.
For Thomas’s algorithm, each generation is run for 1000 gen-
erations giving a total of 2,000,000 queries or cost evaluations
performed. That is, the algorithm considers two million distinct
solutions and measures the cost of each solution. At the end
of that process the best solution found during those queries is
produced. The random query algorithm makes 2,000,000 ran-
dom queries and reports the best of all of those queries. Fig-
ure 4 shows that obtaining a low cost solution to the Steiner
tree problem is not as hard as it would at first appear.

The random query algorithm produces a cost of 1246 with
probability slightly lower than 0.7. This solution corresponds
to the minimum spanning tree solution (Fig. 3B), where all
highway junctions must be inside cities, and no interchanges
can be added. This restriction simplifies the problem; there is a
well-known efficient algorithm known as Prim’s algorithm for
finding the optimal solution [31].

The reason why this solution is so common has to do with
the genotype’s configuration (Fig. 2). One fifth of all genomes
have zero interchanges. For five nodes there are 5

2
 = 10 possi-

ble connections. This results in 1024 possible ways to
connect the nodes, at least one of which corresponds to a mini-
mum spanning tree. This means that at least one in 5120 genomes
corresponds to this minimum spanning tree solution. Given
two million random queries, not finding this trivial solution
would be an improbable event. Repeated random queries will
quickly find the minimum spanning tree with high probability.
As a result, having a search algorithm find it is no great success.

Figure 4: Performance of the genetic algorithm compared to that of
random queries. doi:10.5048/BIO-C.2012.1.f4

http://dx.doi.org/10.5048/BIO-C.2012.1.f4

Volume 2012 | Issue 1 | Page 6

Climbing the Steiner Tree

In his discussion, Thomas presents a number of non-Steiner
solutions produced by his algorithm. These correspond to some
of the bumps in Figure 4. He says,

I call the non-Steiner solutions “MacGyvers”….
The “MacGyver” solutions [the various non-optimal
solutions] are not as elegant and pretty as the for-
mal Steiner solutions, but they get the job done, and
often quite efficiently. [20]

One of these solutions mentioned by Thomas [20] is the
minimum spanning tree solution presented above; the other
two solutions he mentions are more expensive. Such solutions
should not be considered as “quite efficient” or “getting the job
done” because they are either trivial or worse than the trivial
solution. It is not reasonable to deem the search algorithm as
successful when it settles on one of these solutions.

Comparing the probability of success
In order to determine the probability of success for the ran-

dom search algorithm, given the empirical probability distribu-
tion for a single query, we use the following technique. Let Qi
for i ∈ (1..2000000) be a random variable: the cost of a ran-
domly generated solution. Let Y = be the result of
choosing the best solution of the 2,000,000 queries. 2,000,000
queries are performed because that is the number of queries
performed by a run of the genetic algorithm. The probability
distribution function of Y is [32]

	
	 	

(7)

Since the various Qi are independent and identically distributed,

	

	

(8)

Since all costs are rounded down the nearest integer, we
define the random variable Z = ⌊X.

	 	 (9)

Thus we can determine the distribution of Z, the integral
cost of the solution produced by a search algorithm making
2,000,000 random queries.

Determining sources of active information
Most search algorithms are parameterized. The parameters in

genetic algorithm design are nearly always tuned by the pro-
grammer using some variation of trial and error. Typically, only
the final successful result is reported in the literature, while pro-
gram failures during the design of a successful genetic algorithm
are generally not reported. These failures, however, can provide
information about the character of the program’s goal as learned
by the programmer during the design of the program. Knowl-
edge gained through failures themselves are part of the search
and are included in the search by the programmer. Active infor-
mation is therefore provided to the search. Tell-tale signs of this
tuning are often evident in the program. Such is the case with
Thomas’s code.

Determining the baseline. Before we can measure the active
information available from the different search algorithms, we
need to establish the underlying difficulty of the problem. If we
were to just make a random guess at a solution for the problem
under consideration, what is the probability that guess would
reach the target? That defines the probability of success, p, for
the baseline search algorithm in Equation 6. But that probabil-
ity depends on which threshold is being considered. We will
consider the probabilities of the three target thresholds: opti-
mal, good, and adequate, as defined in the previous section.

Baseline for optimal solutions. How many optimal solutions
exist? The method of encoding used by the genetic algorithm
results in the same solution being encoded in multiple ways.
By calculating the number of duplicates of the optimal solution
we can estimate the probability of finding the optimal solu-
tion. The optimal solution has three interchanges. This means
that the fourth interchange can take any value with 106 possible
equivalent variations, since the fourth interchange’s coordinates
are now junk DNA. The fourth interchange would have eight
possible connections, all of which are ignored, producing 28
equivalent variations. Additionally, the three interchanges can
be placed into the representation in any order, but that order
does not change the cost of the solution. There are 3! = 6 pos-
sible such arrangements.

There are four interchange solutions that do not connect any-
thing to the fourth interchange and thus have equivalent cost.
The actual coordinates of the fourth interchange do not matter,
which gives 106 equivalent variations. The order of interchanges
and which interchange is not used do not matter, giving 4! = 24
possible variations.

Other solutions of equal fitness may exist; however, this
establishes a lower bound on the probability of guessing the
correct solution. Consequently,

	 	 (10)

where T is the set of all optimal solutions. The total number of
solutions is

	 .	 (11)

We can thus bound the probability of randomly selecting an
optimal value

	

 	 (12)

Baseline for good and adequate thresholds. We empirically
estimated the probability of both the good and adequate thresh-
olds by running Monte Carlo experiments that tested random
solutions. 11,228,106,000 random queries were performed to
obtain an empirical estimation of the probability of finding the
target. The probabilities for finding the good and adequate
targets were 1.7812e-09 and 1.9905e-07, respectively. The
empirically determined probability for finding the optimal tar-
get was zero, because none of the random queries was successful
in finding the target.

Effect of repeated queries. Active information can be obtained
by many random queries. In fact we expect about log 2 Q bits

Volume 2012 | Issue 1 | Page 7

Climbing the Steiner Tree

of active information from performing Q queries [9]. Thus for
about two million queries we expect to get approximately 21
bits of active information. The empirically determined bits of
active information obtained by the random queries is 20.93
and 20.65 for the good and adequate targets, respectively. This
agrees with the theoretical prediction for two million random
queries. The empirically determined bits of active information
for the optimal target were negative infinity (-∞), because we
were unable to find the optimal target by random queries.1

Effect of count of interchanges. The first element of the
genome is the number of interchanges (Fig. 2). However, the
actual number of interchanges used in the solution may be less
than the number specified in the genome. Consider the exam-
ple illustrated in Figure 5 of an interchange unconnected to any
of the cities. Because no highways are built to the interchange,
no additional cost is contributed to the solution. The solution
is indistinguishable from the equivalent solution without that
interchange. As a result, we can say that this solution uses no
interchanges despite including an interchange in the genome.

Figure 5: A road network with an additional unused interchange.
doi:10.5048/BIO-C.2012.1.f5

Including the interchange count in the genome is therefore
not strictly necessary. Instead, the interchanges can always be
present and simply ignored if they are not connected to any-
thing. The significance of including the interchange count is
that it shifts the distribution of solutions. There are five possible
interchange counts, {0,1,2,3,4}. With the count element, there-
fore, one fifth of all possible genomes contain zero interchanges.
Without that count element, 2-26 of all possible genomes con-
tain no interchanges.2 Including the count element pushes the
distribution towards solutions with fewer interchanges. Not
including the count element pushes the distribution towards
more interchanges.

The code restricts the minimum number of interchanges to
be two. That is, even though the genome theoretically allows for
a specification of zero or one interchanges, this is prevented by
the initialization and mutation code.

“The precise code snippet where this frontloading is being
performed” from Thomas’s Fortran version of the program is
shown below. It ensures that there are at least two interchanges
(Thomas calls them variable points) during the initialization of
the population [21] :

NPV = INT(RNDVAL*FLOAT(NVMX-1))+2 ↩
 ↪! MINIMUM 2 VARIABLE POINTS

1	 A value of negative infinity for the active information in the search for the opti-
mal target indicates that success is too rare to determine exactly how rare it is.

2	 Given the initial 5 nodes, there are 5
2

 = 10 possible connections. Given all 9
nodes there are 9

2
 = 36 possible connections. This means that there are 26 con-

nections involving the additional four nodes. In order for none of the additional
nodes to exist, all of these connections must be off, giving a probability of 2-26.

Figure 6: Probability of different interchange counts for a ran-
dom query versus number of minimum interchanges. Each line
represents a different minimum number of interchanges in the
genome and gives the distribution of actually used interchanges. The
data is discrete, with dashed lines added for clarity of presentation.
doi:10.5048/BIO-C.2012.1.f6

Other code ensures that mutations maintain at least two
interchanges.
NEW = INT(URAND(SEED)*FLOAT(NVMX-1))+2 ↩
 ↪ ! MINIMUM 2 VARIABLE POINTS

We can analytically determine the distribution of actually-
used interchanges given possible choices of a minimum inter-
change count. Thomas’s algorithm requires at least two inter-
changes in every genome, even though it is possible that some
of these are not connected to anything. In the next paragraph
we analytically derive the distribution of used interchanges for
varying minimum interchange counts.

Figure 6 shows the distribution over different actual inter-
change counts varying with a minimum interchange count
enforced in the simulation. It gives the probability of each
number of interchanges given a specific minimum value.
Given a minimum of zero, all different interchange counts
have almost the same probability. However, given a minimum
interchange count of four, which is equivalent to not having
the interchange count element, obtaining a solution with less
than four interchanges is unlikely. Each choice of a minimum
interchange count produces a different distribution. As the

Figure 7: Effect of interchange number on distribution of solution
costs. doi:10.5048/BIO-C.2012.1.f7

http://dx.doi.org/10.5048/BIO-C.2012.1.f5
http://dx.doi.org/10.5048/BIO-C.2012.1.f6
http://dx.doi.org/10.5048/BIO-C.2012.1.f7

Volume 2012 | Issue 1 | Page 8

Climbing the Steiner Tree

minimum is increased, all counts below the minimum become
very improbable but never reach zero. Thomas’s algorithm uses
an interchange count of two, which de-emphasizes solutions
with zero or one interchange, while still emphasizing solutions
with two or three interchanges.

Figure 7 shows the probability of finding the targets given dif-
ferent minimum interchange counts. We see that a minimum
interchange count of two, which is what the algorithm uses,
seems to be the best choice. In contrast, placing no restriction
on the number of additional interchanges results in a significant
decrease of the probability of the finding the targets. Table 1
shows the active information extracted by these different ver-
sions of the algorithm. Notice that the active information to
find the “Adequate” target using the unrestricted genotype is
less than the 20 bits extracted by repeated random queries.
It is easier to find an “Adequate” solution by random queries
than with the unrestricted form of the genetic algorithm. The
algorithm still outperforms the random queries for the “Good”
solution. Thomas’s original algorithm is restricted to a mini-
mum of two interchanges and extracts over 28 bits of active
information. Without the restriction on the number of inter-
changes, the algorithm extracts less than 24 bits of information.
The restriction added four bits of active information to Thom-
as’s algorithm. It is clear that tuning the minimum number of
interchanges helped find a better solution.

Effect of restricted initialization. The genome allows the X
and Y coordinates to lie anywhere in the range {0,1,2,…,999}.
However, when the initial population is generated, the inter-
changes are restricted to being inside a smaller area. The follow-
ing code is responsible for that restriction. [21]
RNDVAL = URAND(SEED)
XPP = 200+INT(RNDVAL*600.) ! X-LOCATION
XP(J+NFIX) = XPP
RNDVAL = URAND(SEED)
YPP = 400+INT(RNDVAL*200.) ! X-LOCATION
YP(J+NFIX) = YPP

The x-coordinate is restricted to be within the range 200-800
whereas the y-coordinate is restricted to be in the range 400-
600. Figure 8A shows the area to which the initially selected
interchanges are restricted. They are confined to the central area
where we would expect useful interchanges to be positioned.
Figure 8B shows how the performance of the genetic algorithm
is affected by this change. Table 2 shows the active informa-
tion obtained for each version of the algorithm. As with the

previous example, the performance of searches for “Good”
and “Adequate” targets have declined. The “Adequate” target is
again less likely to be found with this genetic algorithm than a
random query algorithm. It is clear that the restriction of the
initial population to this area was a helpful decision.

Effect of selection skew. As noted, it is easy to obtain a solu-
tion with a score of 1246. The optimal solution has a cost of
1212. Consequently, there is a very small range of possible costs
that are of interest, especially when contrasted with the range
of possible costs, 0 - 100000. As a result, any typical method of
selection is going to have difficulty in differentiating between
the different scores.

Thomas normalizes the costs of the solution in the popula-
tion as follows:

	

 	 (13)

where Ci is the cost of solution i, Cmax is the solution with the
largest cost and Cmin is the solution with lowest cost. Thomas
defines the probability of population member i being selected
as a parent for a reproductive event as

	

	

(14)

where s is the skew parameter. Without the skew parameter
there isn’t enough selective pressure to effectively separate scores
of close value. Figure 9 shows how the skew affects the probabil-
ity of finding the various targets. With a skew of just 1.0, the
probability of success is noticeably decreased. However, a rela-
tively small skew value is sufficient to enable helpful selection.
Thomas had to tweak his algorithm to have sufficient selective
pressure, so he used s = 1.5.

Effect of mutations. It is possible for an algorithm to use prior
knowledge in the design of mutations. However, Figure 10
shows Thomas’s algorithm not to be very dependent on muta-
tions. Turning off mutations completely has a noticeable but
not dramatic effect. However, varying the rate of mutation does
not have a large effect either way. Consequently, this algorithm

Table 1: Effect of the number of minimum interchanges on active
information*

Minimum Interchanges Optimal Good Adequate
0 -∞ 23.88 17.08

1 -∞ 28.27 21.47

2 -∞ 28.29 21.49

3 84.83 28.26 21.50

4 85.62 28.09 21.41
* Active information is given in bits.

Figure 8: Effect of restricting the initialization area on the distribu-
tion of solution costs. The area under restriction is shown in (A), while
(B) illustrates the effect on performance of the genetic algorithm with
and without the restricted area. doi:10.5048/BIO-C.2012.1.f8

Table 2: Effect of restricted initiation on active information*

Optimal Good Adequate
restricted -∞ 28.29 21.49

unrestricted -∞ 26.64 19.85
* Active information is given in bits.

http://dx.doi.org/10.5048/BIO-C.2012.1.f8

Volume 2012 | Issue 1 | Page 9

Climbing the Steiner Tree

does not depend extensively on the mutations as a source of
active information.

Effect of crossover. While the algorithm is not very suscepti-
ble to mutations, it does depend on crossover. Crossover mixes
two different genomes together to form the final genome. We
contrast the performance of several methods of crossover:

•	 Single-point
This is the method of crossover used in the Thomas’s
algorithm. A single point in the genome is chosen.
The child receives a genome constructed of one parent
before that point and another parent after that point
(Fig. 11A).

•	 Two-point
Two points are selected. The child receives the genome
of the first parent except between the two points where
the second parent’s DNA is taken (Fig. 11B).

•	 Uniform
For each letter, the parent from which to copy the letter
is chosen randomly. This results in a thorough mixing of
the parent’s genomes (Fig. 11C).

•	 None
No crossover is used; instead one parent is used without
modification.

Figure 11: Crossover methods. Illustrated are (A) single-point cross-
over, (B) two-point crossover, and (C) uniform crossover methods.
doi:10.5048/BIO-C.2012.1.f11

Table 3 shows the active information extracted by each form
of crossover. Figure 12A shows the algorithm performance. It is
clear the crossover method affects the algorithm performance.
Introducing a single-point crossover is very helpful; however,
increasing the amount of crossover does not improve perfor-
mance further. Rather, performance decreases with increasing
crossover. Some mixing of the genomes is helpful, but increased
mixing degrades performance.

In addition, not all crossover points are equal. When the
single-point crossover produces a child, it picks a point of
division. Everything to the left of that point is taken from the
“mother” and everything to the right is taken from the “father.”
But some points of division are more useful than others. As
shown in Figure 2, the genome is divided into three sections
that are analogous to genes. The first gene specifies the number
of interchanges. The second gene specifies the coordinates of all
the interchanges. The third gene specifies which nodes are con-
nected to each other. By restricting the location of the crossover
point, we can control which genes are mixed and which are
copied intact. To analyze the effects we ran simulations where
the crossover point is restricted to different areas. These areas
are depicted in Figure 13 and described below:

•	 Case 1
The crossover point is in the interchange count or coor-
dinates. This preserves the connections, and produces a
mix of the interchange coordinates.

Figure 9: Effect of skew on the probability of finding the targets.
doi:10.5048/BIO-C.2012.1.f9

Figure 10: Effect of mutation number on distribution of solution
costs. doi:10.5048/BIO-C.2012.1.f10

Table 3: Active Information* for Differing Crossover Styles

Method Optimal Good Adequate
Single-point -∞ 28.29 21.49

Two-point -∞ 28.08 21.31

Uniform -∞ 26.93 20.18

None 77.66 26.69 20.16
* Active information is given in bits.

http://dx.doi.org/10.5048/BIO-C.2012.1.f11
http://dx.doi.org/10.5048/BIO-C.2012.1.f9
http://dx.doi.org/10.5048/BIO-C.2012.1.f10

Volume 2012 | Issue 1 | Page 10

Climbing the Steiner Tree

•	 Case 2
The crossover point is fixed between the location and
the connections. This preserves both the coordinates
and connections, but takes each from a different parent.

•	 Case 3
The crossover point is in the connections. This preserves
the coordinates and produces a mix of the connections.

•	 Case 4
This is two point-crossover, with the first point fixed
between the coordinates and connections. The second
point is somewhere in the connections. Like case 3, this
preserves the coordinates and mixes the connections.
However, the connections are more thoroughly mixed.

Figure 12B shows the results. Cases 1 and 2, which did not
mix the connections, performed relatively poorly. In contrast,
cases 3 and 4, which mixed the connections but not the coor-
dinates, performed well. In fact, performing additional mixing
provided better performance. This suggests that crossover works
well primarily because it combines different connection maps.
The one section or gene seems to work very well with crossover
while the other sections do not.

Crossover is much more helpful when it results in recom-
bining connection maps rather than recombining interchange
coordinates. It does help in the case of being applied to the
coordinates, but not nearly to the same degree as it does when
applied to the connections. There is something unique about
the connection map that makes crossover so successful. We sus-
pect that it exploits some of the same properties used in Prim’s
algorithm.

Crossover works well because of the way the genome is struc-
tured. The genome is built using a structure consisting of a list
of locations as well as a connection map indicating which cities
and interchanges are connected. However, the ways in which

the genome could be structured are limited only by the devel-
oper’s creativity. A number of other possibilities also exist:

•	 Every city and interchange could have a list of other cit-
ies/interchanges to which it is connected.

•	 The genome could be a sequence of road segments speci-
fied by start and stop points

•	 The genome could have been represented as a bitmap
where each bit indicates whether or not an integral coor-
dinate was on a road.

None of these methods were chosen, and none of them
would seem to be useful representations. But they are rejected,
not because something is intrinsically wrong with them, but
because the developer uses his knowledge of the problem to
come up with the best way to represent the solution. The pro-
grammer chooses the representation that he believes will be
effective and part of that is choosing a representation that works
well with crossover.

The crossover and genome structure work together. As such,
their selection by the developer constitutes the use of prior
knowledge about the problem in order to help identify better
solutions.

C++ Algorithm changes
Thomas published a C++ version of his algorithm [22] after

posting his original description. Our focus has been on the For-
tran version of the algorithm because that it where the most
detailed results were presented. For the most part, the C++
algorithm works the same as the Fortran algorithm but some
differences should be noted.

•	 The minimum interchange count system has been
modified.
The initialization restricts the interchange used count to
always be at the maximum. [22]

Figure 12: The effect of crossover on the distribution of solution costs. (A) shows the effect of crossover area, and (B) the effect of crossover
method. doi:10.5048/BIO-C.2012.1.f12

Figure 13: Genome structure depicting the different possible crossover zones. doi:10.5048/BIO-C.2012.1.f13

http://dx.doi.org/10.5048/BIO-C.2012.1.f12
http://dx.doi.org/10.5048/BIO-C.2012.1.f13

Volume 2012 | Issue 1 | Page 11

Climbing the Steiner Tree

x = (double)rand() / (double)RAND_MAX;
num = (int)((double)(m_varbnodes*x);
num = m_varbnodes; // over-ride!!!

The claim that no design was involved in the produc-
tion of this algorithm is very hard to maintain given
this section of code. The code picks a random count
for the number of interchanges; however, immediately
afterwards it throws away the randomly calculated value
and replaces it with the maximum possible, in this
case, 4. The code is marked with the comment “over-
ride!!!,” indicating that this was the intent of Thomas. It
is the equivalent of saying “go east” and a moment later
changing your mind and saying “go west.” The most
likely occurrence is that Thomas was unhappy with the
initial performance of his algorithm and thus had to
tweak it.
Additionally, the probability of mutating the inter-
change count is very low.
if (x < 0.0001) ↩
 ↪ // mutate nodes area - Rare...
{
	 y = (double)rand() / (double)RAND MAX; ↩
 ↪// uniform random
	 num = (int)((double)(m_varbnodes+1)*y);

While not outright forbidding genomes with lower
interchange counts, this causes the algorithm to prefer
interchanges with the maximum count. The only way to
decrease this count is to have a relatively rare mutation
occur. The result is that the system is biased towards
solutions with more interchanges.

•	 The restricted area initialization was not included.

•	 The skew remains the same.

•	 Crossover remains the same.

DISCUSSION

Irreducible complexity
Thomas claims to have debunked irreducible complexity. His

claim is based on the idea that, given any of the solutions pro-
duced by the algorithm, removing one of the interchanges or
one of the highway connections would result in a disconnected
map. That is, because the algorithm builds the minimum
amount of highway between the cities, there is no redundancy
in the system. Removing anything will leave the drivers in at
least one of the cities without a road to a destination city. As
such, he argues that his genetic algorithm can build irreducible
complexity, something that an evolutionary process is not sup-
posed to be able to do.

Behe defined irreducible complexity as:

a single system composed of several well-matched,
interacting parts that contribute to the basic function,
wherein the removal of any one of the parts causes
the system to effectively cease functioning [33]

We must therefore ask whether or not the cities and intercon-
necting highways that the algorithm builds can be considered
well-matched interacting parts. Behe has in mind a very com-
plex system, one that chance, acting alone without selection,
cannot reasonably be supposed to have produced. His argu-
ment is directed at the abilities of selection because the assump-
tion is that chance alone is easily ruled out. That is a reasonable
assumption for the biological systems that Behe considers.

However, this assumption does not hold in the case of Steiner
trees. As has been demonstrated, producing a solution that is
connected can be trivially done. This algorithm’s success derives
from adapting a working solution into a better one. But irre-
ducible complexity is concerned with the difficulty of produc-
ing a working solution at all. If producing a working solution
by random chance is trivial, then irreducible complexity simply
does not apply.

Misunderstanding of prior statements
Thomas’s understanding of the intelligent design position is

that the product of genetic algorithms has been “snuck” into
the algorithm [19]:

They claim that GAs cannot generate true novelty
and that all such “answers” are surreptitiously intro-
duced into the program via the algorithm’s fitness
testing functions.

Thomas defends this understanding by quoting one of us
(Dembski):

And nevertheless, it remains the case that no genetic
algorithm or evolutionary computation has designed
a complex, multipart, functionally integrated, irre-
ducibly complex system without stacking the deck
by incorporating the very solution that was supposed
to be attained from scratch. [34, p. 58]

However, this quotation is not attempting to argue that
all genetic algorithms succeed by incorporating the solution.
Rather, the claim is specifically restricted to systems which are
“complex, multipart, functionally integrated, and irreducibly
complex.” The above quote makes the argument that genetic
algorithms have not developed any systems that are remotely
comparable to the complexity that we find in biology, not that
all targets must be embedded in the algorithm to be found.

The chapter on genetic algorithms in No Free Lunch: Why
Specified Complexity Cannot Be Purchased without Intelligence
[10] deals with this subject. The discussion is not restricted
to genetic algorithms with a pre-specified target. Much of the
text discusses such simulations, but only because the most well-
known genetic algorithms used to defend Darwinian evolution
contain the target in just such a way. Other genetic algorithms,
such as one that evolves antennas, or another that evolves strate-
gies for playing checkers, are discussed. Even Elsberry and Shal-
lit, both critics of intelligent design, point this out:

Dembski considers a number of genetic algorithms:
variants on Dawkin’s METHINKS IT IS LIKE A WEA-
SEL example, an evolution simulation of Thomas

Volume 2012 | Issue 1 | Page 12

Climbing the Steiner Tree

Schneider, an algorithm of Altshuler & Linden for
the design of antennas, and evolutionary program-
ming approach to checkers-playing by Chellapilla &
Fogel. [5]

The following quotation from No Free Lunch: Why Specified
Complexity Cannot Be Purchased without Intelligence [10] makes
it clear that not all processes find answers hidden within the
algorithm. In many cases the investigator inserts complex speci-
fied information (CSI) by the informed choices he makes.

In no way do SELEX, ribozyme engineering, or sim-
ilar experimental techniques falsify the Law of Con-
servation of Information or circumvent the No Free
Lunch theorems. In SELEX experiments large pools
of randomized RNA molecules are formed by intelli-
gent synthesis and not by chance—there is no natu-
ral route to RNA. These molecules are then sifted
chemically by various means for catalytic function.
What’s more, the catalytic function is specified by the
investigator. Those molecules showing some activ-
ity are isolated and become templates for the next
round of selection. And so on, round after round. At
every step in both SELEX and ribozyme (catalytic
RNA) engineering experiments generally, the inves-
tigator is carefully arranging the outcome, even if he
or she does not know the specific sequence that will
emerge. It is simply irrelevant that the investigator is
ignorant of the identity and structure of the evolved
ribozyme and must determine it after the experiment
is over. The investigator first had to specify a pre-
cise catalytic function, next had to specify a fitness
measure gauging degree of catalytic function for a
given biopolymer, and finally had to run an experi-
ment optimizing the fitness measure. Only then does
the investigator obtain a biopolymer exhibiting the
catalytic function of interest. In all such experiments
the investigator is inserting CSI right and left, most
notably in specifying the fitness measure that gauges
degree of catalytic function. Once it is clear what
to look for, following the information trail in such
experiments is straightforward. [10, pp. 220-221]

Dembski went on to apply this logic generally, including to
genetic algorithms.

A quotation from Meyer (2004) has also been used by
Thomas [19] to support the contention that intelligent design
proponents claim that all genetic algorithms reproduce a hid-
den solution:

These programs only succeed by the illicit expedient
of providing the computer with a “target sequence”
and then treating relatively greater proximity to
future function (i.e., the target sequence), not actual
present function, as a selection criterion. [35]

However, in context “these programs” does not refer to the
entire class of genetic algorithms, but rather to two specific
examples for which this is a valid critique.

Moreover, the source continues:

As Berlinski (2000) has argued, genetic algorithms
need something akin to a “forward looking memory”
in order to succeed. Yet such foresighted selection has
no analogue in nature. In biology, where differential
survival depends upon maintaining function, selec-
tion cannot occur before new functional sequences
arise. Natural selection lacks foresight. [35]

The target sequence is merely the method that the algorithms
under consideration use to provide foresighted selection. The
objection being raised to genetic algorithms is that they simu-
late foresight, which natural selection does not have. It is not
the presence of the target, but rather how it is used that is at
issue.

Thomas has misunderstood the intelligent design position.
Perhaps it has not been explained with sufficient clarity. We do
not argue that every genetic algorithm contains the final output
encoded within it. A quick survey of genetic algorithms shows
that they routinely produce solutions which cannot have been
encoded in them. Thus the argument is a straw man; we do not
take that position.

Summary
Thomas has proposed a genetic algorithm used to solve the

Steiner tree problem as proof that the Neo-Darwinian account
of evolution explains biological complexity and that intelligent
design has been roundly refuted. But this claim is based on a
misunderstanding of what the intelligent design community
has said. The claim is not that the solution found by a genetic
algorithm is hidden inside the algorithm, but rather that the
algorithm contains the necessary information sources in order to
find a low probability target. This is because in order to develop
a successful genetic algorithm, the developer makes many deci-
sions based on knowledge of the problem he is attempting to
solve. As such, information is derived from this prior knowledge of
the search problem. Tuning a genetic algorithm is another source
of active information: it is common simply because it works.
The reason it works is because it exploits the developer’s own
knowledge of the problem to be solved.

Various other genetic algorithms that solve Steiner tree prob-
lems clearly and openly make use of theoretical insights into the
Steiner tree problem to assist in the search. Thomas indicates
that he does not make use of such knowledge, but this is not the
case. The distribution of the number of interchanges has been
tweaked so that the algorithm focuses on solutions with the
correct number of interchanges. The initial population is gener-
ated such that the interchanges are located where they are more
likely to be useful. The strength of selection has been increased
by a parameter to counteract the small range of interesting fit-
ness values. The crossover method and genome structure assist
in finding the solution. All of these introduce active informa-
tion; they are exploiting prior knowledge about the problem.
Thomas’s algorithm does make use of far less prior knowledge
than the other Steiner tree algorithms and as a result is only able
to solve problems an order of magnitude smaller.

Volume 2012 | Issue 1 | Page 13

Climbing the Steiner Tree

As with our prior work [9,11,12,18], we have shown that
the search algorithm proposed as an example of the power of
natural selection to generate information from scratch in fact
demonstrates the abilities of humans to devise genetic algo-
rithms that draw on existing information. Thomas has failed
to demonstrate the abilities of natural selection left to itself. In
order to demonstrate the abilities of natural selection, it would
be necessary to avoid making any decisions in the development
of the genetic algorithm that deliberately assist in finding the
solution. Only a teleological process guided by some form of
intelligence can function in this way. Insofar as simulations of
evolution make use of prior knowledge, they are not simula-
tions of Darwinian evolution in any meaningful sense.

Appendix: Minimum interchange math
Let C be the number of fixed cities. Let N be the total num-

ber of live interchanges in a genome; that is the count specified
as the first element of the genome. Let Df be a discrete random
event which occurs when no interchange in the set f has a con-
nection to it and thus contributes no cost to a particular solu-
tion. There are

2
 possible connections. Excluding connections

to the cities ∈ f, we obtain − | |
2

 possible solutions. There are
thus

2
−

− | |
2 connections involving the cities in f. In order

for these interchanges to have no connections all must be off,
denoted by an “F” in the genome rather than on denoted by a
“T”. This gives us

	 Pr = 2 | | .	 (A1)

Let U be the discrete random variable representing the number
of interchanges which are not connected to any city or inter-
change. There are possible sets of such cities. We can calcu-
late the cumulative density function

	 () = Pr [U <] = 1 – Pr [U ≥]

 = 1 −
0 if U >
1 if U < 0

 2

	
(A2)

Since this is a discrete random variable we can say that

	 .	 (A3)

Let X be the actual number of used nodes in the genome

	 	 (A4)

Let m be the lower bound on N which is enforced by the code.
We can thus calculate the probability

	

 	 (A5)

by the law of total probability.
We can easily express the probability distribution of N

	

 .
	

(A6)

Using Equation A4 and Equation A3,

	 Pr [= | =] = Pr [= − | =]

= () − (− 1)

	
(A7)

Acknowledgements
We would like to thank the anonymous reviewers for their

great attention to detail and valuable comments. Thanks to
their comments, this is a much better paper than the one they
reviewed.

1.	 Dawkins R (1996) The blind watchmaker: Why the evidence of
evolution reveals a universe without design. Norton (New York).

2.	 Marczyk A (2004). Genetic Algorithms and Evolutionary Compu-
tation. http://www.talkorigins.org/faqs/genalg/genalg.html. Last
accessed September 19, 2011.

3.	 Schneider TD (2000) Evolution of biological information.
Nucleic Acids Res 28: 2794–2799. doi:10.1093/nar/28.14.2794.

4.	 Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evo-
lutionary origin of complex features. Nature 423:139–44.
doi:10.1038/nature01568.

5.	 Elsberry W, Shallit J (2011) Information theory, evolutionary
computation, and Dembski’s “complex specified information.”
Synthese 178: 237-270. doi:10.1007/s11229-009-9542-8

6.	 Altshuler E, Linden DS (1997) Wire-antenna designs using
genetic algorithms. IEEE Antennas and Propagation Magazine
39:33–43. doi:10.1109/74.584498.

7.	 Koza JR, Keane MA, Streeter MJ (2003) Evolving inventions. Sci
Am 288:52–59. doi:10.1038/scientificamerican0203-52.

8.	 Thompson A (1997) An evolved circuit, intrinsic in silicon,
entwined with physics. In: From Biology to Hardware: Lecture
notes in Computer Science, Springer-Verlag (Berlin/HeidelBerg),
pp 390-405. doi:10.1007/3-540-63173-9_61.

9.	 Dembski WA, Marks II RJ (2009) Conservation of information
in search: Measuring the cost of success. IEEE T Syst Man Cy A
39: 1051-1061. doi:10.1109/TSMCA.2009.2025027.

10.	Dembski WA (2002) No Free Lunch: Why Specified Complexity
Cannot Be Purchased without Intelligence, Rowman & Littlefield
(Lanham, MD).

11.	Ewert W, Montañez G, Dembski WA, Marks II RJ (2010) Efficient
per query information extraction from a Hamming oracle. 42nd
Southeast Symp Syste: 290-297. doi:10.1109/SSST.2010.5442816.

12.	Montañez G, Ewert W, Dembski W A, Marks II R J (2010)
A vivisection of the ev computer organism: Identifying
sources of active information. BIO-Complexity 2010(3):1–6.
doi:10.5048/BIO-C.2010.3.

13.	Shapiro J (2011) Evolution : A View from the 21st Century, FT
Press Science (Upper Saddle River, NJ).

14.	Wolpert D, Macready W (1997) No free lunch theorems for optimi-
zation. IEEE T Evolut Comput 1: 67-82. doi:10.1109/4235.585893.

15.	Schaffer C (1994) A conservation law for generalization perfor-
mance. In: Cohen WW and Hirsch H, eds. Proceedings of the
Eleventh International Machine Learning Conference. Rutgers
University (New Brunswick), pp 259-265.

http://www.talkorigins.org/faqs/genalg/genalg.html
http://dx.doi.org/10.1093/nar/28.14.2794
http://dx.doi.org/10.1038/nature01568
http://dx.doi.org/10.1007/s11229-009-9542-8
http://dx.doi.org/10.1109/74.584498
http://dx.doi.org/10.1038/scientificamerican0203-52
http://dx.doi.org/10.1007/3-540-63173-9_61
http://dx.doi.org/10.1109/TSMCA.2009.2025027
http://dx.doi.org/10.1109/SSST.2010.5442816
http://dx.doi.org/10.5048/BIO-C.2010.3
http://dx.doi.org/10.1109/4235.585893

Volume 2012 | Issue 1 | Page 14

Climbing the Steiner Tree

16.	Ho Y-C, Pepyne DL (2001) Simple explanation of the no free
lunch theorem of optimization. IEEE Decis Contr P 5: 4409-4414.
doi:10.1109/.2001.980896.

17.	Christensen S, Oppacher F (2001) What can we learn from No
Free Lunch? A first attempt to characterize the concept of a searchable
function. In: Proceedings of the 2001 Genetic and Evolutionary
Computation Conference. Morgan Kaufman (San Mateo). pp
1219–1226.

18.	Ewert W, Dembski WA, Marks II RJ (2009) Evolution-
ary synthesis of nand logic: Dissecting a digital organism.
IEEE Sys Man Cybern San Antonio Oct 11-14: 3047-3053.
doi:10.1109/ICSMC.2009.5345941.

19.	Thomas D (2010) War of the Weasels: An Evolutionary Algo-
rithm Beats Intelligent Design. Skeptical Inquirer 43:42–46.

20.	Thomas D (2006) Target? TARGET? We don’t need no stinkin’
Target! http://pandasthumb.org/archives/2006/07/target-target-
w-1.html. Last accessed September 19, 2011.

21.	Thomas D. FORTRAN for Genetic Algorithm. http://www.
nmsr.org/genetic.htm. Last accessed September 19, 2011.

22.	Thomas D (2006). Steiner Genetic Algorithm - C++ Code.
http://pandasthumb.org/archives/2006/07/steiner-genetic.html.
Last accessed September 17, 2011.

23.	 Crescenzi P, Kann V (1998). A compendium of NP optimization problems.
http://www.nada.kth.se/~viggo/wwwcompendium/node78.html. Last
accessed March 26, 2012.

24.	Jesus M, Jesus S, Márquez A (2004) Steiner Trees Optimization
using Genetic Algorithms. Technical report, Centro de Simulação
e Cálculo.

25.	Barreiros J (2003) An hierarchic genetic algorithm for comput-
ing (near) optimal Euclidean Steiner trees. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO),
pp. 56–65.

26.	Jones J, Harris Jr FC (1996). A Genetic Algorithm for the Steiner
Minimal Tree Problem. In: Proceedings of ISCA’s International
Conference on Intelligent Systems.

27.	Ding S, Ishii N (2000) An online genetic algorithm for dynamic
Steiner tree problem. In: IEEE International Conference on
Industrial Electronics, Control and Instrumentation 2:812–817.
doi:10.1109/IECON.2000.972227.

28.	Kapsalis A, Rayward-Smith V J, Smith G D (1993) Solving the
graphical Steiner tree problem using genetic algorithms. J Oper Res
Soc 44:397–406. doi:10.1038/sj/jors/0440408.

29.	Rabkin M (2002) Efficient Use of Genetic Algorithms for the
Minimal Steiner Tree and Arborescence Problems with Applications
to VLSI Physical Design. In: Koza JR, ed. Genetic Algorithms
and Genetic Programming at Stanford 2002. Stanford Bookstore,
(Stanford, CA). pp 195–202.

30.	Julstrom B (2002) A scalable genetic algorithm for the recti-
linear Steiner problem. IEEE C Evol Computat 2:1169-1173.
doi:10.1109/CEC.2002.1004408.

31.	Cormen T (2001) Introduction to Algorithms. 2nd Ed. MIT Press
(Cambridge, Mass).

32.	Marks II R J (2009) Handbook of Fourier Analysis & Its Applica-
tions. Oxford University Press (Oxford, New York).

33.	Behe M (1996) Darwin’s Black Box : The Biochemical Challenge
to Evolution, Free Press (New York).

34.	Dembski W A (2005) Rebuttal to reports by opposing expert
witnesses. http://www.designinference.com/documents/2005.09.
Expert_Rebuttal_Dembski.pdf. Last accessed 3/26/2012.

35.	Meyer S C (2004) The origin of biological information and the
higher taxonomic categories. P Biol Soc Wash 117:213–239.

http://dx.doi.org/10.1109/.2001.980896
http://dx.doi.org/10.1109/ICSMC.2009.5345941
http://pandasthumb.org/archives/2006/07/target-target-w-1.html
http://pandasthumb.org/archives/2006/07/target-target-w-1.html
http://www.nmsr.org/genetic.htm
http://www.nmsr.org/genetic.htm
http://pandasthumb.org/archives/2006/07/steiner-genetic.html
http://www.nada.kth.se/~viggo/wwwcompendium/node78.html
http://dx.doi.org/10.1109/IECON.2000.972227
http://dx.doi.org/10.1038/sj/jors/0440408
http://dx.doi.org/10.1109/CEC.2002.1004408
http://www.designinference.com/documents/2005.09.Expert_Rebuttal_Dembski.pdf
http://www.designinference.com/documents/2005.09.Expert_Rebuttal_Dembski.pdf

