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Abstract
This paper presents a mathematical unique origin model of humanity. It suggests algorithms for testing different historical scenarios of
the human population under the assumption that we all descend from one single couple. For each such scenario, DNA variation is
repeatedly simulated from a sample of individuals of today in order to estimate statistics of DNA variation. Comparison of these statistics
to real data makes model validation possible. Each simulation repeat is divided into three steps, where first the genealogy of the sampled
individuals is simulated backwards in time until the founder generation is reached, then founder DNA is generated and thereafter
spread forwards in time to the present, along the lineages of the ancestral tree. The model is applicable to predefined demographic
scenarios that may include population expansions and bottlenecks. Colonization/range expansion and geographic migration is achieved
by dividing the metapopulation into geographically separated, but more or less connected, subpopulations. Age structure is modeled in
terms of overlapping generations, with various mating rules for males and females and reproduction rules of mating couples. On the
genetic level, our model incorporates mitochondrial as well as nuclear (autosomal, X and Y chromosomal) DNA, ordinary (reciprocal)
recombination events and gene conversion. The source of genetic variation is selectively neutral germline mutations, and for autosomal
and X chromosomal DNA, a second source of variation is created diversity. An extension of the model allows for balancing selection. It
combines forward and backward simulation of the genealogy. Our paper is a first step towards a future goal to compare a best fitting
unique origin model with a common descent model where humans and other species have a shared ancestry.
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INTRODUCTION
The study of human history combines lines of evidence from sev-
eral fields. Fossil records, archaeological findings and radiometric
techniques are used to analyze and date morphological and cultural

traits, and genetic data is used to trace common ancestry. The ear-
liest genetic studies of human history relied on markers from blood

groups and proteins [1,2]. The advent of new sequencing technolo-
gies in the 1980s initiated studies of mitochondrial DNA [3-9], the
nonrecombining region of the Y chromosome [7,10-14] and nuclear
autosomal DNA using microsatellite markers [15,16]. As the high

throughput sequencing technology developed, millions of single
nucleotide polymorphism markers could be analyzed at increasingly

smaller costs, and DNA sequence variation was cataloged between
and within human subpopulations [17-21]. This made it possible
to analyze human ancestry with much larger autosomal DNA data
sets, using increasingly sophisticated mathematical models [22-26].

Some of these methods are particularly well suited for studying
the more recent human history [27]. Autosomal marker data has

also been used to infer human ancestry and diversity from Alu
insertion polymorphisms [28-30].

All proposed models of human evolution assume a common ances-

try of man and other species. The most common one, the Out of
Africa replacement model, asserts that modern humans arose in

Africa more than 100,000 years (100 kyrs) ago. Then a very small
subpopulation migrated to the Middle East around 50 kyrs ago,

spread to Europe, Asia, Oceania and America, replacing Nean-

derthals, Denisovans and other existing local archaic populations
[31-34].

Other models have also been proposed. The most well known of
these is multiregional evolution. It posits that humans arose at

several continents, but still with an African dominance through

migration rather than replacement. It is believed that these human
lineages, from different parts of the world, originate from Africa

about two million years ago [35,36]. The last few years, technolo-

gies have been developed for sequencing of ancient DNA. They
reveal a Neanderthal and Denisovan ancestry in many present-day

human populations [37-39]. This caused many researchers to adopt

a hybrid of the replacement and multiregional models, accord-
ing to which our ancestors originated from Africa, but still had

some interbreeding with archaic populations [40]. The common
ancestry framework has also been used in cross-species studies in

order to analyze autosomal DNA of humans, chimpanzees and

gorillas jointly, with the purpose of estimating divergence times
and ancestral population sizes of the assumed species tree [41-42].

The difficulty of inferring human population history from present
genetic data is well known, since population size changes over time
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and replacement of one population by another is confounded by

migration and regional population size variation, see for instance
[43-46] and Chapter 2 of [47]. Recent estimates of divergence times

of gene trees in [48] confirm these difficulties, although the best

fitting model for human history in this paper was a variant of the
Out of Africa model, where different African archaic populations

were connected by gene flow, although only one of them eventually

colonized the other continents.

But it is not only difficult to choose between different common

descent scenarios of human history. A number of evidences in

favour of a different scenario have recently been pointed out in
[49], whereby humans descend from one single couple that was

created unique without further ancestry. We will refer to this as

a unique origin model. In a previous paper (Part 1) we used a
qualitative argument to compare the common descent and unique

origin scenarios of humanity [50]. In this follow-up paper (Part 2)

we build a quantitative framework by which a unique origin model
can be tested.1

The methodological novelty of our paper is to put together a num-

ber of previously known methods into one model that incorporates
many features, and our approach can briefly be summarized as
follows: As in many other papers we first develop a mathematical

model for human ancestry. Then based on this we devise an algo-
rithm for simulating genetic data in terms of an ancestral tree for a
sample of individuals for which DNA is supposedly collected. This

tree aims to reflect human history, but, in contrast to previous
work, it is built under the assumption that humanity originates
from one single couple. In order to obtain a computationally feasi-
ble algorithm, the genealogy is built backwards in time, starting

from the sampled individuals. The model is very flexible and
allows for various demographic scenarios such as population ex-
pansions, bottlenecks and different geographic colonization and

migration patterns. It also incorporates different mating and re-
production schemes, and age structure in terms of overlapping
generations. The mechanisms of genetic change are applicable to

autosomal, sex chromosome or mitochondrial segments of DNA. It
also includes neutral mutations, reciprocal recombination events
and gene conversion. An important parameter of the model is the

created diversity of the founder generation, since it facilitates a
higher degree of genetic diversity for a relatively young population
within autosomal and X chromosomal regions, and possibly also

for mitochondrial DNA.

The paper is organized as follows: In Section 1 we give a detailed
overview of the model, including its input parameters and output

statistics. We also propose methods for validating simulations
with real data. Section 2 gives a more detailed description of

how the genealogy is built backward in time, whereas Section 3

explains how ancestral mutations are generated and spread to the
present. The model gets more complicated when mutations are

not selectively neutral. In Section 4 we propose an extension for

balancing selection based on a mixture of forward and backward
simulation. Finally, in Section 5 we end with some concluding

remarks. A list of notation can be found in Table 1.

1. MODEL
This section gives an overview of our proposed model for human

history. Its demography in terms of population size variation,

1It is possible, also within a common descent framework, that all
humans descend from one single man and woman, if this couple had
further ape-like ancestors. In Part 1 we argued that inbreeding de-
pression is a severe problem for such a model. For this reason, we
will assume that a single founding couple implies no common ances-
try of humans and other species, so that any genetic diversity of the
founding couple is created, not inherited from ancestors.

geographic subdivision, migration and colonization is specified in

Section 1.1. In Sections 1.2 and 1.3 we describe the format for
storing genetic data. We specify how chromosomes of individuals

are represented as strings, divided into blocks within which no re-

combinations occur. Sections 1.4-1.7 contain a detailed description
of the algorithm under a neutral model of microevolution. This

is achieved by first simulating the genealogy backwards in time

(Section 1.4) and then spreading DNA from the founder popula-
tion to the present (Section 1.5). This second step is simplified

considerably if double mutations are ignored (Section 1.6). The

last two Sections 1.8 and 1.9 deal with methods of validating the
model. This is accomplished by comparing how well the simulated

output fits real data.

1.1 Demographics
We will first specify a demographic model of human history in
terms of a world population of males and females, whose size varies

over time, with geographic division into more or less isolated sub-
populations. This is formalized by considering a two-sex population
at a sequence of time points T0 = 0 < T1 < . . . < Tmax, where

T0 = 0 represents the present, and Tmax is the time point of the
founding generation. If the population has non-overlapping gener-

ations, then t = 0, . . . , tmax is a generation number, and Tt − Tt−1

is the time interval between generations t and t− 1. The model is
more general though, allowing for overlapping generations, so that

Tt − Tt−1 represents a fraction of a generation. For this reason,
we will mostly refer to t as a time point.

It is assumed that the world population has size Nt = Mt + Ft
at time t, of which Mt are males and Ft females. In particular
Mtmax = Ftmax = 1 represents the founding couple. The members
of time point t are numbered with the Mt males first, and then the

Ft females, as {1, 2, . . . ,Mt,Mt + 1, . . . ,Mt + Ft}. This makes it
possible to represent any individual by a pair (t, i) of numbers, a
time index t when he or she lives and an order number i within that

time point. Consequently, the whole human race is represented as
a collection

I = {(t, i); 0 ≤ t ≤ tmax, 1 ≤ i ≤ Nt} (1)

of individuals, males and females. For overlapping generations,
some individuals will appear in (1) more than once, first as a

newborn and then later on as an adult.

The next-generation sequencing data allows for the resolution, not
only between continents, but also within continents and countries.

The average genetic composition of individuals in a region will
typically vary continuously with geographic location, see [51] and

references therein. This is most likely a combination of ancestral
colonization and founder events on one hand, and isolation by
distance on the other. Here we propose a model which incorpo-
rates both of these two mechanisms. Its geographic substructure

is discrete in terms of a number of subpopulations that either
represent larger regions/continents (African, European, Middle

East, East Asian, Polynesian, native American) or a finer division.

The island model of [52,53] is the first example of such an approach,

where the metapopulation is divided into a fixed number of equally

large and homogeneous islands, with the same migration rate
between any pair of them. Because of its simplicity and analytical

tractability, variants of this model have frequently been used for

making inference about human history, see for instance [54-56].
With our simulation based approach, it is possible to consider

more general models, with a metapopulation that is divided into a

possibly time varying number Dt of demes of variable size. The
migration rates can be chosen with great flexibility between any

pair of demes in order to mimic geographic location (see Section
1.4), and the migration habits of males and females can be different
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Figure 1: A population with three demes. It has six non-overlapping gen-
erations t, males are depicted as squares and females as circles, and the
founder population (t = tmax = 5) consists of one couple. The colour of
each individual represents a deme number d, with white for d = 1, light blue
for d = 2, and red for d = 3. Since generations are non-overlapping, the
total number of individuals is |I| = 40, and the total number of chromosomes
is |C| = 80. The genealogy is not shown, so it is not possible to tell from
the figure which individuals and chromosomal regions are ancestral. A total
of 7 individuals are sampled from the t = 0 generation, from all three demes
(nmm1 = 1, nmm2 = 2, nmm3 = 0, nff1 = nff2 = 1, nff3 = 2 in
(16)). They contribute 14 chromosomes ck, k = 1, . . . , 14. doi:10.5048/BIO-
C.2016.4.f1

[57,58]. One option is to locate the demes on a two-dimensional
lattice with different latitudes and longitudes, where migration

from a deme is possible only to one of its four neighboring lattice
points, each of which may or may not correspond to an existing
deme. This is a version of the two-dimensional stepping stone

model [59], and various extensions of it have been used in order
to infer population history locally in Europe [60-62]. In these
models, a deme may not only represent geographic location, but

also ethnicity, for instance hunter/gatherers and farmers. Since the
number of demes is very large, it is not feasible to specify their sizes
in advance. The demography is rather simulated forwards in time,
with parameters that regulate population growth and migration.

Formally, we write the male and female population sizes at time

point t as sums
Mt =

∑
dMtd,

Ft =
∑
d Ftd,

(2)

over all demes d = 1, . . . , Dt, with Ntd = Mtd + Ftd the total
number of males and females in deme d. If one new population is

colonized or founded at time point t, Dt increases by one, and NtDt

is the size of the founding population of this deme. Figures 1-2
illustrate a six generation population with 40 individuals, 3 demes
and possible migration between the most recently founded demes

2 and 3. Since generations are non-overlapping in this example,
each male or female only appears once.

1.2 Chromosomes
We look at genetic inheritance in the population at a chromo-
some, or a segment of it. This segment could either represent

nuclear DNA, as part of an autosome (non-sex chromosome), X-
chromosome, Y chromosome, or it may represent mitochondrial
DNA. For nuclear DNA, each individual has two homologous copies

of this chromosome, inherited from the father and mother (although

the two sex chromosomes X and Y within males are not truly ho-
mologous). The chosen segment of such a chromosome forms a
haplotype, i.e. a sequence h = (a1, . . . , aL) of DNA at L loci. Such

a locus may represent a single nucleotide or site, with

al ∈ Asn = {A,G,C, T} (3)

the allele at site number l ∈ L, where

L = {1, . . . , L} (4)

Figure 2: Colonization and migration history of the population in Figure
1. The upper plot shows the deme branching pattern. Each horizontal line
corresponds to a branching event or colonization, when the daughter deme
receives all its immigrants from the mother deme, such as d = 2 does from d =
1 between time points 3 and 4, and d = 3 does from d = 2 between time points
1 and 2. Between time points 0 and 1 there is a migration rate 0.1 back and forth
between demes 2 and 3. This is the probability for a parent to originate from
a deme other than the child. The lower plot shows the demes as circles with
different colours. Those generation shifts are shown where either a colonization
or migration occurs. Colonization events are illustrated with solid arrows that
point to the newly populated deme. Since each newly colonized deme receives
all its parents from the same deme, this corresponds to a migration rate of 1.
Ordinary migration is illustrated with dashed lines, with the migration rate next
to it. doi:10.5048/BIO-C.2016.4.f2

is the collection of all loci. Each such allele is either an adenine
(A), guanine (G), cytosine (C) or thymine (T ). An averaged sized
whole chromosome has length L = 1.5 · 108 nucleotides. A locus

may also represent a codon, i.e. a triple of nucleotides. Then each
allele

al ∈ Acod

= {AAA,AAG,AAC,AAT,ACA, . . . , TTT}
\ {TAA, TAG, TGA}

(5)

belongs to the set of 43 − 4 = 61 non-stop codons, i.e. those
triplets that code for amino acids. A third possibility is to include

insertions and deletions, so that l more generally represents a locus
which has been aligned between different copies of the chromosome

in the population. At a short tandemly repeated or microsatellite

locus, the allele
al ∈ Ams = {1, 2, 3, . . .} (6)

refers to the number of repeats of a certain short sequence (tandem),

typically of length 1-6 base pairs. Figure 3 shows a region with 9

single nucleotide or microsatellite loci, and how the alleles at each
locus vary for a sample of 6 chromosomes.

It is possible to include copy number variation (CNV) as well,
similar to microsatellite markers. An autosomal locus l may also

represent an Alu insertion polymorphism. These are genetic ele-

ments that mobilize through a process called retroposition, with
an allele

al ∈ AAlu = {0, 1}, (7)

that represents absence (0) or presence (1) of an Alu.

For nuclear DNA there are 2Nt = 2Mt + 2Ft chromosomal copies
(or haplotypes of length L) at time point t, numbered as c =

1, . . . , 2Mt, 2Mt + 1, . . . , 2Mt + 2Ft, so that the 2Mt chromosomes
within males come first, and then the 2Ft chromosomes within
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Table 1: List of notation for some of the most important quantities. See also Table 3 for all input parameters of the algorithm.

t Time point
Nt Population size at time t

d Deme or subpopulation number

Ntd Size of deme d at time t
i Order number of individual

(t, i) Identifier of individual number i at time point t

I Collection of all individuals at all time points
It All individuals at time t

c Order number of a chromosomal copy
(t, c) Identifier of chromosome number c at time point t

C Collection of chromosomes at all time points

n Number of sampled copies of a chromosome or chromosomal segment
k Order number of a sampled chromosome
ck Order number of the kth sampled chromosome at time point 0

l Order number of a locus
A(l) Set of possible alleles at locus l
L Set of all loci of the chromosomal segment

hk Haplotype of the kth sampled chromosome at time point 0
akl Allele of the the kth sampled chromosome at locus l
q Order number of a haplotype block

hbq Haplotype block number q
AI All individuals that are ancestral to at least one sampled chromosome, for at least one haplotype block

AIt All ancestral individuals at time t
AC All chromosomes that are ancestral to at least one sampled chromosome, for at least one haplotype block
ACt All ancestral chromosomes at time t

ARG Ancestral recombination graph
AHB Ancestral haplotype block
AME Ancestral mutational events

Figure 3: A sample of six aligned sequences. These are numbered ck,
k = 1, . . . , 6, and they originate from a chromosomal region of L = 9 loci
(L = {1, 2, 3, 4, 5, 6, 7, 8, 9}), of which 8 consist of one single nucleotide
(Lsn = {1, 2, 3, 4, 5, 6, 8, 9}) and one is a microsatellite locus (Lms = {7})
with a two letter repeat sequence AG. The polymorphic loci, i.e. the ones with
variation between sequences, are Lpol = {2, 5, 7, 8}, and of these Lba =
{2, 5} are biallelic, with just two alleles or variants. Chromosomes c1, . . . , c4
are from deme 1 (white), whereas chromosomes c5, c6 are from deme 2 (light
blue). doi:10.5048/BIO-C.2016.4.f3

females. More specifically, individual i at time t contributes with
two chromosomes c = 2i− 1 and c = 2i, inherited from the father

and mother respectively. An arbitrary chromosome is referred to

as (t, c), including its time point number t and its order number c
at this time point. For autosomal nuclear DNA, the total set of

chromosomes

C = {(t, c); 0 ≤ t ≤ tmax, 1 ≤ c ≤ 2Nt} (8)

has size |C| = 2
∑tmax
t=0 Nt. Since Y chromosomes only reside

within males, and are inherited from fathers, it corresponds to a

subset

CY = {(t, c); 0 ≤ t ≤ tmax, c = 2i− 1, 1 ≤ i ≤Mt} (9)

of (8). The other sex chromosome, X, resides within males and

females, but males always inherit their single copy from their
mother, so that

CX = {(t, c); 0 ≤ t ≤ tmax, c = 2i, 1 ≤ i ≤Mt,

or 2Mt + 1 ≤ c ≤ 2Nt}.
(10)

Since each individual i has only one copy of mitochondrial DNA

(mtDNA), inherited from the mother, we represent it as c = 2i
(regarding c = 2i− 1 as empty or non-existing). The mtDNA of

the female population then corresponds to

Cmit = {(t, c); 0 ≤ t ≤ tmax, c = 2i,Mt + 1 ≤ i ≤ Nt}. (11)

It is easy to extend the model to the whole genome, by letting

h be a haplotype with alleles from different chromosomes. It is
only for notational simplicity that we speak of a region within

one chromosome. But (t, c) could equally well represent genome
number c at time point t.
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1.3 Haplotype Blocks
A large part of the genetic diversity in a population between differ-
ent parts of an autosome or X-chromosome is due to (reciprocal)
recombinations. Recombinations are caused by crossovers, i.e.

switching the DNA that an individual receives along the chro-
mosome between grandpaternal and grandmaternal modes of in-
heritance. It is well known that recombination rates vary along

chromosomes on a coarse scale of order 10 Mb [63], and there is
also increasing evidence [64] for a substantial recombination rate
variation on a much finer 1-100 kb scale, as modeled for instance

by [65]. A likely explanation of this local variation is either re-
combination hotspots (positions with a high crossover probability)

or randomly located positions where ancestral crossover events

occurred, or a combination of both. This is related to existence of
so-called haplotype blocks. It has been argued that a large part

of the genome can be divided into such blocks, with few recombi-
nations within blocks, and many recombinations between them,
see for instance [66-71]. Although the extent to which these blocks

explain all genetic diversity is not settled [72,73], they nevertheless
provide a very useful framework, particularly for a relatively young
population with only two founders.

Haplotype blocks can be defined in different ways. We assume that

recombinations in an autosomal chromosome or X-chromosome
inherited from a mother only occur between haplotype blocks,
similarly as in [74]. In more detail, we divide the L loci of each

chromosome (t, c) into Q haplotype blocks

hbq = {lq−1, . . . , lq}, q = 1, . . . , Q, (12)

where l0 = 0, and the rightmost end points of all blocks satisfy

0 < l1 < l2 < . . . < lQ = L. Since recombinations only occur

between blocks, the loci within each block will have the same
genealogy, but loci of different blocks may have different genealogies.

For Y -chromosome and mitochondrial DNA we assume there are
no recombinations, and put Q = 1.

Early studies predicted that haplotypoe blocks vary in length
between 5 kb and 200 kb [75,76], but more recent analyses with
more genetic markers suggest that their average length could be

as small as 5kb [77]. In addition, the blocks tend to be shorter in
African populations than in non-African ones [78]. These results
imply that a popoulation averagedQ is at least of the order 104 for a

whole chromosome. It is possible though to have smaller haplotype
blocks. Since we don’t allow for recombinations within blocks, this
is appropriate for models that incorporate gene conversion. In the

extreme case, one could allow each locus to be a separate block
(Q = L). If the haplotype blocks represent widely separated regions

from the same chromosome, with gaps in between, a recombination

between two neighboring blocks represents an odd number of
crossovers. If, on the other hand, the haplotype blocks are adjacent

chromosomal regions, a recombination between two neighboring
haplotype blocks represents one single crossover event.

Our model incorporates two options, the first of which involves
fixed or random (simulated) haplotype block boundaries that are

specified before the genealogy is built. These boundaries may then

be interpreted as recombination hot spots, where all crossovers are
enforced to occur (at least if haplotype blocks are adjacent chro-
mosomal regions, without any gaps between them). For the second

option of our algorithm, the haplotype blocks are not specified
in advance. Instead they are generated as the genealogy is built.

Then haplotype block boundaries correspond to ancestral recom-
bination events rather than recombinational hotspots, although
many of these ancestral recombinations may still have occurred at

hotspots, if a locally varying recombination rate is assumed.

1.4 Backward Simulation of Genealogy
In order to build a genealogy, we must not only set up parental
relationships between the individuals (1) of a population, but also

specify how DNA is inherited for the chromosomal segment that was
defined in Sections 1.2-1.3, at all of its haplotype blocks. Since the
DNA of our ancestors is not fully known, the genealogy is not known

either. We therefore have to reconstruct it with some uncertainty.
This is accomplished by viewing it as a random object, with a
statistical distribution that quantifies our incomplete knowledge

of the actual genealogy. From this distribution we simulate a
number of plausible genealogies. The simulation algorithm that
accomplishes this task should ideally include the following six
major mechanisms of genetic change:

(i) Genetic drift, due to randomly varying reproductive success
of mating couples, and Mendelian inheritance, with its

randomness in choosing whose grandparental DNA to pass

on to the grandchildren.

(ii) Recombination of DNA from homologous chromosomes.

(iii) Colonization of new demes, and then isolation or migration
between them.

(iv) Mutations, i.e. changes of DNA.

(v) Natural selection. due to a systematic variation in reproduc-
tive fitness.

(vi) Founder diversity of autosomal, X-chromosome and possibly
also mitochondrial DNA, i.e. allowing for different alleles

of homologous founder chromosomes, or different founder
mitochondria, at various loci.

Microevolutionary common descent models only include the first
five mechanisms, but (vi) is important in order to generate enough

diversity for a population with only one founding couple. The
demography will only influence some of these six forces of genetic
change; (iii) through migration, (i) through population size changes

(since the genetic drift is much larger in a small deme that experi-
ences a founding event or bottleneck, than in a large one) and to

some extent (v), since the carrying capacity of a population may

influence which characteristics that favour survival.

A number of computer programs have been developed for the pur-
pose of simulating how demographics and the genetic composition

of a population changes over time, see for instance [79] for a review.
The most straightforward approach is to use a forward algorithm
[80-86]. The name reflects that these programs simulate haplotypes

of chromosomes by starting at the founder generation and ending at
the present. They are often very flexible, allowing for many demo-
graphic scenarios, with all forces (i)-(v) of microevolution included.

But since they require DNA of all individuals to be simulated for

all haplotype blocks (with a complexity of the order |C|Q), with
current computer speed they seem to be limited to relatively small
populations, not the whole human history (1010 < |C| < 1011).

To circumvent this difficulty we will mostly simulate the genealogy

backward in time. The backward ancestry or genealogy of the
sampled chromosomes at each haplotype block is a coalescence

tree [87] with lineages that merge until the founding generation
t = tmax is reached, when at most 2Ntmax = 4 lineages remain. Due
to recombinations, different haplotype blocks may have different

coalescence trees, and the whole collection of genealogies is referred
to as an ancestral recombination graph [88-90]. Overviews of

coalescence and ancestral recombination graph theory can be found

[47] and [91-93].

The main advantage of backward simulation is that only a small
subset of human history needs to be sampled. A price to pay is the
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difficulty of incorporating natural selection. The algorithm that

we describe in this and the next section will therefore only include
the other five mechamisms (i)-(iv),(vi) of genetic change, whereas

a discussion of natural selection is postponed to Section 4.

Several simulation programs generate ancestries in reverse time.
Many of them [94-96] focus on relatively short chromosomal regions
for monoecious and diploid populations. They use large time
scale approximations, only simulating those generations where

coalescence or recombination events occur. The algorithm in [97]
simulates all generations, and is applicable for whole chromosomes,
whereas those in [98,99] incorporate geographic substructure and

two-sex models into the coalescence framework as well. We will
use a similar approach and build a discrete time simulation model
that includes not only geographic substructure and two sexes, but

also overlapping generations.

With reversed time simulation, it is possible to sample only a

subset of n chromosomes

{(0, c1), (0, c2), . . . , (0, cn)} (13)

of generation 0, with 1 ≤ c1 < c2 < . . . < cn ≤ 2N0. This number
n can be quite large (like 104 − 105), but still much smaller than
2N0 ∼ 1010. We refer to a chromosome (t, c) as ancestral if it is

an ancestor of at least one of the n sampled chromosomes for at
least one haplotype block hbq . The set of ancestral chromosomes
of time point t is denoted as

ACt = {c; (t, c) ∈ AC}. (14)

The main idea of backward simulation is that the set AC of an-
cestral chromosomes only comprises a small fraction of all chro-

mosomes in (8). In particular, ACt is typically a small subset
of all chromosomes {1, . . . , 2Nt} at time t. Figure 4 displays a
population with 10 individuals, as well as its genealogy forwards

and backwards in time. It can be seen that the backward pedigree
is a subset of the forward pedigree. At the current time point there
are N0 = 4 individuals, of which n = 3 are sampled, one adult
female and one newborn cousin pair.

In order to build the genealogy backwards, we must first specify
the demes and sex of the individuals from which DNA samples

are taken. Since individual i at time 0 contributes with two
chromosomes c = 2i− 1 and c = 2i of nuclear DNA, it suffices to
specify four sample sizes

nmmd = number of sampled males from
deme d with both chromosomes

in the sample,

nmd = number of sampled males from
deme d with only one chromosome

in the sample,
nffd = number of sampled females from

deme d with both chromosomes
in the sample,

nfd = number of sampled females from

deme d with only one chromosome

in the sample,

(15)

for each deme d = 1, . . . , D = D0, so that the total sample size

can be written as

n =
∑D
d=1

[
nmd + nfd + 2(nmmd + nffd)

]
= nm + nf + 2(nmm + nff ),

(16)

where nm, nf , nmm and nff are the total numbers of sampled
males and females that contribute with one or two haplotypes. If

DNA-variation within a specific subpopulation is of interest, one
may take D = 1, but in order to get a representative sample for the

Figure 4: The history of a population during three time points. Upper
graph: The population is displayed as in Figure 1, with squares and circles
for males and females. The male and female population sizes at time points
0, 1, 2 = tmax are M0 = 1,M1 = 2,M2 = 1 and F0 = 1, F1 = 3, F2 = 3.
The population consists of two demes 1 (white) and 2 (light blue), with number
of demes D0 = D1 = 2, D2 = 1 at the three time points. Each individual
that lives at time t is assigned a number (t, i), with males numbered first in at
each time point. Middle graph: The pedigree of the population, generated for-
wards in time, with all mated pairs connected by horizontal lines, and a vertical
line in between that connects to their children. Although |I| = 11, the popu-
lation has only 10 individuals, since (1, 4) survives to the next time point. The
two rectangles next to each non-founder individual (t, i) represent its two ho-
mologous chromosomes, with numbers (t, 2i − 1) and (t, 2i), of which the
first is inherited from its father and the second from its mother. There are
2 · 11 = 22 such rectangles C = {(0, 1), (0, 2) . . . , (2, 4)} in the graph, cor-
responding to 2 · 10 = 20 distinct chromosomal copies. For sex chromosome
DNA, CY = {(0, 1), (1, 1), (1, 3), (2, 1)} and CX = C \CY , whereas for mi-
tochondrial DNA, Cmit = {(0, 4), (0, 6), (0, 8), (1, 6), (1, 8), (1, 10), (2, 4)}.
Lower graph: Subpedigree with |AI| = 9 nodes, corresponding to 8 individuals.
It is built backwards in time from the three sampled individuals (0, 1), (0, 2)
and (0, 3), one male and two females (nm = nf = 0, nmm = 1, nff =
2). The sampled chromosomes at time 0 are (c1, . . . , c6) = (1, . . . , 6).
doi:10.5048/BIO-C.2016.4.f4
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Figure 5: Ancestral recombination graph generated from the pedigree in
the lower part of Figure 4. It corresponds to a non-sex chromosome seg-
ment, so that each individual carries two haplotypes. It starts from one male
(0, 1) and two females (0, 2) and (0, 3), giving a total of n = 6 sampled
chromosomes (0, ck) for k = 1, . . . , 6, with ck = k. The number ARGtkq

within each rectangle shows ancestry of a sampled chromosome ck at one
of the Q = 3 haplotype blocks hbq , q = 1, 2, 3 (columns), at one of three
time points t = 0, 1, 2 (rows), as well as the deme d in which the ances-
tor lived (d = 1: white, d = 2: light blue). For instance, in the middle row
of the upper left rectangle, the paternally inherited chromosome (0, 1) of in-
dividual (0, 1) experiences two recombination events, so that grandpaternal
DNA from chromosome (1, 3) is inherited at haplotype blocks hb1 and hb3

(ARG111 = ARG113 = 3), whereas grandmaternal DNA from chromosome
(1, 4) is inherited at hb2 (ARG112 = 4). doi:10.5048/BIO-C.2016.4.f5

metapopulation, samples should be taken from all demes (D = D0),

at least if they represent larger regions or continents. In any case,
it is either assumed that individuals and their genetic markers
are sampled randomly within each subpopulation or according

to some ascertainment procedure that mimics how real data was
collected (see Section 3.3). The sample sizes in (15) and numbering
of chromosomes in (13) will depend on DNA type, as described in

more detail in Section 2.

The ancestral recombination graph (ARG) summarizes the back-
ward genealogy of the sample, and it incorporates the first three

forces of microevolution; genetic drift (i), recombination (ii) and
migration (iii). It is stored in a three-dimensional array

ARG = (ARGtkq ; 0 ≤ t ≤ tmax, 1 ≤ k ≤ n, 1 ≤ q ≤ Q), (17)

where ARGtkq ∈ ACt specifies which ancestral chromosome at time

t in (14) that is an ancestor of chromosome (0, ck) at haplotype

block hbq. As an example, the ancestral recombination graph of
the pedigree in the lower part of Figure 4, is shown in Figure 5.

The ARG is generated recursively back in time. For each time

point we need to assign parents to all individuals that have an-
cestral DNA and specify which grandparent that passed on DNA,

using Mendelian laws of inheritance and recombinations events.

As the founder generation is reached, we get a pedigree with all its
members’ recombination events. The most complicated part is to
construct the pedigree backwards in time. It requires a reproduc-

tion model in terms of mating preferences and how the number of
offspring varies between couples. Additional complications arise

when geographic substructure in terms of more or less isolated

islands or demes is allowed for, or if age structure in terms of
overlapping generations is assumed (see Section 2 for details).

We will generalize a model in [99-101], and assign parents to
the newborns of each time point in two steps. The (possibly

Figure 6: Mating probabilities between time points 0 and 1 for the popu-
lation of Figure 2. This is the probability B0d,eg that the father comes from
deme e and the mother from deme g, given that the child lives in deme d at
time t = 0. Row (column) sums in each table correspond to the fraction of
fathers (mothers) that migrate or stay in the deme in which they were born. In
the upper part, the fraction of migrating fathers and mothers is the same, 0.1,
whether the child lives in deme 2 or 3. In the lower part, the fraction migrat-
ing of fathers (mothers) is 0.05 (0.15) for children living in deme 3. Parents
migrate together to deme 2, whereas they migrate independently to deme 3.
When parents migrate together, the male and female migration rates must be
the same, so therefore the lower left scenario is not possible. They overall mi-
gration rate equals the average of the fraction of males and females that lived
in another deme than the child. In all cases it equals 0.1 for children living
in deme 2 (B023 = 1 in equation (74)) and 0.1 for children living in deme 3
(B032 = 1). These two migration rates 0.1 are shown in the lower subplot of
Figure 2. doi:10.5048/BIO-C.2016.4.f6

different) demes in which the parents live are determined first,
according certain migration probabilities Btd,eg that a child at

time t from deme d has the father (at time t+ 1) from deme e and
the mother (at time t + 1) from deme g. As the name suggests,
these probabilities determine how often males and females migrate

between demes. They make it possible to incorporate, for instance,
a higher migration rate for women than for men [57], see Figure 6.

In the second step, the children assign parents within the chosen

demes, using the two key parameters

α : controls distribution of number of
offspring among females,

β : tunes the degree of monogamy,

(18)

to specify how reproductive success varies between individuals.

Together with the population size, they determine genetic drift, i.e.
the rate at which allele frequencies change over time. Some extreme

choices of 0 ≤ α, β ≤ ∞ are listed in Table 2. The parametrization

in (18) favors polyandry (women having several men) when β is
large. But it is straightforward to exchange the role of the two

sexes, so that the model that favors polygymy (men having several

women) instead when β is large. It has been argued in [57] that
this is a more reasonable assumption. On the other hand, recent

studies suggest that the degree of monogamy is quite high in human

populations. These conclusions are based on comparing estimates
of effective population sizes or of historical recombination rates

between autosomal and X chromosome regions [102].

Each row of the ancestral recombination graph of Figure 5 repre-
sents a time point. For autosomal and X-chromosome DNA, the

inherited haplotype blocks of such a row is a mosaic from different

ancestral chromosomes at this time point. The breakpoints of
the mosaic are caused by historical recombination events between

haplotype blocks, so that the more recombinations there are, the
finer is the mosaic. In order to model recombinations, we specify
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Table 2: Some parameter choices for the pedigree building algorithm of
Section 2.1, and their interpretation.

(α, β) Mating scenario
(∞,∞) Children have parents independently according to a

two-sex Wright Fisher model, within the demes that
have first been assigned to the parents.

(∞, 0) Children have mothers independently within the
deme that has first been assigned to the mother, and
each mother has only one husband per deme.

(0,∞) All children with mother from the same deme, have
the same mother, but the mother chooses fathers in-
dependently for each mating, given that demes have
been assigned to her spouses.

(0, 0) All children with parents from a particular pair of
demes, have the same mother and father.

two vectors
rm = (rm1, . . . , rm,Q−1),
rf = (rf1, . . . , rf,Q−1)

(19)

of recombination probabilities for males and females. If haplotype

blocks are not specified in advance, so that the number of haplotype
blocks is not an input parameter, we replace Q by L in (19). For
mitochondrial or Y -chromosome DNA there is no need to specify
the probabilities in (19), since these sequences only have one

haplotype block (Q = 1).

If two neighboring haplotype blocks hbq and hbq+1 of autoso-

mal or X-chromosome DNA are adjacent chromosomal regions,
with no gap in between, then rmq (rfq) is the probability of one
crossover between hbq and hbq+1 when a sperm (ovum) cell is

formed. Neighboring haplotype blocks may also, more generally,
be separated by a stretch of DNA, and then rmq (rfq) is the proba-
bility of an odd number of crossovers between hbq and hbq+1. The

recombination probabilities vary over regions [63] and are typically
larger for females than for males (see for instance [103], Section
1.3 of [104], and Section 3.12 of [105]). Recent research indicates
that recombination rates may vary between individuals of the same

sex, with a higher average rate for Africans than for people with
European ancestry [78].

A common simplification is to start with a model (19), and then
use sex-averaged recombination probabilities

rq =
1

2
(rmq + rfq) (20)

between all pairs of haplotype blocks hbq and hbq+1. The sex-
and region-averaged crossover probability is roughly 10−8 for one

single nucleotide site. Consequently, if there are no gaps between
any of the Q− 1 pairs of neighboring haplotype blocks, we get a
sex and region-averaged recombination probability

1

L− 1

Q−1∑
q=1

rq ∼ 10−8

between a randomly chosen pair of neighboring blocks. In a simple

model where recombinations occur uniformly over the chromosome,

rq = r =
(L− 1) · 10−8

Q− 1
.

The averaging in (20) is not necessary though, but it is sometimes

preferable in order to reduce the number of input parameters.

When LD patterns over shorter ranges are of interest, it is important

to include gene conversion [106,107] as well. Gene conversions are
closely spaced double crossovers (see Section 2.2) that tend to

break up LD. We specify how often gene conversions occur for

autosomal or X-chromosome DNA by the two vectors

γm = (γm1, . . . , γm,Q−1),

γf = (γf1, . . . , γf,Q−1),
(21)

where γmq (γfq) is the probability that the leftmost of the two

crossovers occurs between haplotype blocks hbq and hbq+1, for

males and females. As for single recombinations, we may take a
sex average γq = (γmq+γfq)/2, and assume Q = L for a version of

the algorithm where the haplotype block structure is not specified

in advance. The gene conversion ratio GCratio = γq/rq reveals
how much more likely gene conversions are compared to single

recombination events. We also need a tract length distribution

(TLD) for the distance between the two crossovers. The sizes of
the haplotype blocks have to be at least as small as the expected

tract length.

Until recently, quite little was known about gene conversion in
mammals. The first studies focused on yeast and fruit flies, with a

mean tract length ranging between 300 and 2000 bp [106,108,109].

It has been established since then that gene conversion is also the
most important determinant of LD patterns over short distances

for humans [110]. For instance, recombination models were fitted in

[109] to patterns of LD in three populations. A mean tract length of
500 bp for the African population gave an estimate GCratio = 7.3.

A model with GCratio = 2 was found in [111] to fit their data set
better than one with single recombinations alone. A fixed tract
length of 500 bp was assumed in [23], and γq = 4.5 · 10−9 per base

pair was obtained for their best fitting model, which corresponds to
a GCratio less than 0.5. More recent estimates in [112] suggest an
average tract length of 75 bp. Combining this with estimates of the

average number of sites affected by gene conversions per generation
[113], one obtains a gene conversion rate of γg = 8 · 10−8, and a
GCratio slightly less than 10.

1.5 Founder Diversity, Mutations and Gene Dropping
In this section we describe how to incorporate into our model two
other mechanisms of genetic change; mutations (iv) and created

founder diversity (vi). It is well known that assumptions concerning
the “molecular clock”, mutations, and the amount of founder
diversity, are both crucial for the timing of human history [114,115].

Since mutations give rise to genetic differences over time, and
founder diversity generates differences in the first generation, it is
helpful to first assign a reference haplotype

href = (aref
1 , . . . , arefL ) (22)

of the first generation as a yardstick to which other haplotypes are
compared. For nuclear autosomal DNA, we regard the haplotype

of the first chromosome (tmax, 1) of the founder generation as this
reference haplotype. Its alleles aref

l have to be chosen in some way
at all loci l. A simple option is to assume that aref

l are drawn

independently between loci, whereas more advanced models take
dependency between neighbouring loci into account [116,117]. In

the first case, it suffices to specify probabilities of picking different

alleles at each loci l. We denote2 these probabilities as Prob(aref
l =

a) = πa for any a that belongs to the set A(l) of possible alleles at
l. This set could be any of (3), (5) or (6), depending on the type

of locus l represents. For a single nucleotide marker (3),

π = (πA, πG, πC , πT ) (23)

contains the frequencies of all four nucleotides in the population.
The model in [118], for instance, asserts that all four types of

2A more accurate notation would be πal, to account for that allele
frequencies depend on the type of marker at locus l. This may also
take into account that allele frequencies for the same type of marker
varies over the genome, for instance between coding and non-coding
regions.
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nucleotides are equally frequent (πA = πG = πC = πT = 1/4),

but we could also use sequence data to estimate (23). For a codon
locus (5),

π = (πAAA, πAAG, . . . , πTTT ) (24)

consists of the frequencies of all 61 non-stop codons, and for a
microsatellite marker (6) it lists the frequencies

π = (π1, π2, π3, . . .) (25)

of the number of tandem repeats.

In order to allow for some variability between the four haplotypes

of the founder generation, we assume that the haplotypes of the
other three chromosomes, (tmax, 2), (tmax, 3) and (tmax, 4), are

generated by copying the reference haplotype href, but this copy-

ing mechanism is interrupted when markers experience “founder
mutations” independently with probabilities

ν = (ν1, . . . , νL). (26)

Such a change from the reference allele aref
l at l to some other

allele is not a germline mutation, where DNA in one of a child’s
two homologous chromosomes is changed compared to a parental
chromosome. It rather contributes to created diversity, a way of
generating genetic difference between the four founder haplotypes.
The frequency of these founder mutations will depend heavily

on the assumed time point when the founding couple lived. An
estimate of νl = 10−3 is given in [119] for a recent founding event
(of the order 10,000 yrs), by extrapolating heterozygosity within

individuals from the HapMap dataset. But at some chromosomal
regions νl could be lower. For instance, there are several genes at
the end of chromosome 6 for which only about 200 base pairs are

polymorphic. If these genes are a few Mbp long, this suggests a
region averaged value of the order νl = 10−4.

For sex chromosome DNA, the founder generation consists of one
Y -chromosome (tmax, 1) as well as three X-chromosomes (tmax, 2),

(tmax, 3) and (tmax, 4). We take (tmax, 1) as the reference haplotype
of the Y -chromosome population, and (tmax, 2) as the reference
haplotype of the X chromosome population. The alleles of these

two haplotypes are chosen independently, according the specified
allele frequencies at all loci. Founder mutations are needed for
the X-chromosomes, in order to generate (tmax, 3) and (tmax, 4)

from (tmax, 2), whereas no created diversity is required for the
founder generation of Y -chromosome DNA. For mitochondrial
DNA within females, (tmax, 4) carries the only haplotype of the
founder generation. We choose it as a reference, and need no

founder mutations3.

When all four chromosomes of the founding generation t = tmax

have been assigned alleles at all loci, the ARG is used to spread
it to the present (t = 0). This so called gene dropping will be
interrupted by some additional and selectively neutral germline
mutations at various loci for time points tmax − 1, . . . , 0. For each

chromosome (t, c) with 0 ≤ t < tmax, the mutation probabilities at
all loci are contained in the two vectors

µm = (µm1, . . . , µmL),

µf = (µf1, . . . , µfL),
(27)

where µml (µfl) is the germline mutation probability at locus l

when sperm (ova) are formed. Equation (27) takes into account

that the mutation probability not only depends on the type of
marker, but also on the chromosomal position, with regions of low

mutation rate surrounded by mutational hotspots. The mutation

3It is possible though to incorporate created diversity of mitochon-
drial DNA, if the woman of the founding generation had diverse mito-
chondria that she passed on differently to her children.

probabilities also seem to vary between individuals [120], but

generally they are higher for males than females, and for males
they also increase with age [121,122]. The age-dependency can be

accounted for when age structure is included in the model, but a

simplified option is to regard µml as an age-averaged mutation rate
at locus l for all males that reproduce. Although not necessary,

we will mostly consider sex-averaged mutation probabilities µl =

(µml + µfl)/2 at all loci, as summarized by

µ = (µ1, . . . , µL). (28)

This will simplify notation and reduce the number of parameters.

It has recently been shown that a majority of DNA has function

in terms of affecting phenotypes or molecular activity [123,124].

Since most mutations are neutral or slightly deleterious, and there
is a repairing mechanism for copying errors during cell division,

it is reasonable to believe that mutation rates should be low for
most parts of the genome. Previous estimates were often based
on sequence comparisons between species and various assumptions

on the existence and timing of divergence events. For instance,
[23] used a value of µl = 1.5 · 10−8 per base pair per generation
at single nucleotides in their best fitting model for human history.
Numerous recent studies (see [122]) from family data make it
possible to detect and count de novo mutation events, so that the

mutation probability for single nucleotides can be estimated directly.
These studies indicate an autosomal mutation rate that is lower
than previously believed, a higher mutation rate for males than for

females, and a rate that increases with age for men. Combining
the results of these studies, the sex and genome-averaged mutation
rate is found to be in the range 1·10−8−1.2·10−8 per base pair per

generation, and it is slightly larger (range 1.3 · 10−8 − 2.2 · 10−8)
within exons. In [125], the authors estimated mutation rates
for single nucleotides of Y -chromosomes. They accounted for its

dependency on paternal age, and found a de novo rate of 1.9 · 10−8

per base pair per generation (if the generation time is 30 years),
whereas [126] used large Icelandic pedigrees to infer a mutation rate

of 3·10−8, which is close to estimates derived from a Chinese family
in [127] and for a small Central Asian population in [128]. For
mitochondrial single nucleotides, the mutation rate was previously

believed to be about ten times as high as for nuclear sites. For
instance, a value of 3.5 · 10−7 per base pair per generation is used
in [7], but recent direct estimates based on family data suggest
that the rate is a lot larger, around 10−5 [129-132], although it

varies considerably between different regions of the mitochondrion.

The higher SNP mutation rate of mtDNA makes it more suitable

for infering the more recent human history, whereas nuclear DNA
is better suited for studying the more distant past. The authors of
[133] used this observation (and the fact that the mitochondrion

population is four times as small) to suggest a bottleneck followed
by a population expansion as part of the Out of Africa scenario.

This would reconciliate the seemingly contradictory observations

of an expanding population from mtDNA, and a bottleneck for
nuclear DNA. With a unique origin approach, a similar argument

applies, but the bottleneck is replaced by created diversity from
one founding couple.

Mutations rates for microsatellites are several orders of magnitudes

larger than for single nucleotides. For non-sex chromosomes, the
mutation rate for males was found to be higher than for females
[134], with a sex-averaged estimate of the mutation probability of

the order 2 · 10−4 − 3 · 10−4 per locus and generation for tandem

repeats of length 2bp, and 10−3 for tandems of length 4bp. In
[135], the mutation rate for Y -chromosomes was estimated to be

an order of magnitude larger.

Given that a mutation occurs at some locus l with probabilities
(26) or (28), at a founder or non-founder chromosome, we need
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Figure 7: Illustration of which genetic material is ancestral from the ARG of Figure 5. It is shown for each chromosome (t, c) which of its haplotype
blocks hbq are ancestral by depicting those from deme 1 (2) as white (light blue), whereas and non-ancestral blocks are shown in black, so that for instance
AHB01 = {1, 2, 3} and AHB13 = {1, 3}. Two of all individuals (t, i) in the pedigree of Figure 4 are not ancestral; (0, 4), who is not part of the sample, and (1, 5),
who has no children (and in particular no children in the sample). Five of all 22 chromosomes (t, c) are not ancestral, i.e. have no ancestral haplotype blocks. This
includes the four chromosomes of the two non-ancestral individuals, and in addition chromosome (1, 5), since individual (0, 2) received her maternal chromosome
from the grandmother (chromosome (1, 6)) at all haplotype blocks. Mutations occur at two loci: A single mutation (filled square) occurs at a locus within haplotype
block hb1 for chromosome (1, 4), so that |AME141| = 1. A double mutation (filled circles) occurs at a locus within haplotype block hb3, one for chromosome (2, 4)
and one for chromosome (1, 6), so that |AME243| = |AME163| = 1. For all other t, c, q we have AMEtcq = ∅. doi:10.5048/BIO-C.2016.4.f7

to define the probabilities by which the allele before the mutation
changes to other alleles. At single nucleotide loci we have point
mutations, i.e. changes between two different nucleotides, such
as A → T or C → G. We collect all probabilities by which new
nucleotides are generated, for all 4 × 3 = 12 possible mutations,

into a matrix

P =


0 PAG PAC PAT

PGA 0 PGC PGT
PCA PCG 0 PCT
PTA PTG PTC 0

 (29)

with four rows and four columns. For instance, PAT = Prob(A→
T |A) is the probability that a mutation from A to T takes place,

given that we know it has happened and that the nucleotide before
the mutation was A. Since any nucleotide gets mutated to some
other nucleotide, the sum of the elements in each row of (29) is 1.

The model in [118], for instance, sets all mutation probabilities in
(29) to 1/3.

More elaborate models can be defined by dividing nucleotides into
purines (A,G) and pyrimidines (C, T ). Point mutations within the

same group (purines or pyrimidines) are called transitions, and
changes between the two groups are called transversions. For single
nucleotide loci l, it is less likely that a transition is a nonsynonymous

mutation that changes the codon, i.e. the triplet of nucleotides
to which l belongs, to one that codes for another amino acid.
The transition/transversion ratio R quantifies how more frequent

transitions are compared to transversions, and it is believed that R

is close to 2 [122,136]. The transition and transversion probabilities
in (29) can sometimes be chosen so that they conform not only

with the nucleotide probabilities in (23), but also with a certain
value of R. It will be seen in Section 3.1.2 that this is not always
possible though, and since the mutation probability also depends

on the allele that mutates, we will discuss more flexible and general
mutation models in Section 3.2.

At loci that represent a codon (5), transition probabilities of a
mutational model are specified between all 61 codons that code for

amino acids. For instance, the authors of [137] define a model that

makes it possible to distinguish between nonsynonymous mutations
(that change the amino acid) and synonymous mutations (that

don’t change the amino acid), making the latter much more likely.

For a microsatellite locus we get a matrix P with rows and columns

as indexed by the number of tandem repeats (6). The simplest
stepwise mutation model in [138] asserts that the number of repeats

only changes one unit down or up with equal probabilities, so that

Pab =


1, a = 1, b = 2,
0.5, a > 1, b = a− 1 or a+ 1,

0, otherwise.

(30)

This model is quite accurate for longer (4-6 bps) tandems, although
a drawback is that the number of repeats may increase beyond all

limits over time. In addition, for short repeats of size 2, (30) does
not account for the fact that repeat numbers sometimes change by
more than one. Several mutation models for AC repeat data were

analyzed in [139], including one with

Pab =

{
exp [−λd(a− b)] , b < a,
exp [−λu(b− a)] , a > b,

(31)

where λd and λu determine how much the repeat number may

change downwards or upwards respectively. If λd > λu, we can tune
the two parameters λd and λu so that the equilibrium distribution
{πa}∞a=1 has a mean and standard deviation that conform with

observed data. It is well known however that the mutation rate also
increases with number of repeats, and this requires the extended
model of Section 3.2.2.

We only need to create mutations (at single nucleotides, codons
or microsatellites) for the ancestral chromosomes, since all non-

ancestral mutations in C \ AC are censored, that is, they never
reach the sampled chromosomes. More specifically, the ancestral

mutational events

AME = (AMEtcq ; 0 ≤ t ≤ tmax, c ∈ ACt, q ∈ AHBct) (32)

is a three-dimensional array of sets, where AMEtcq ⊂ hbq consists

of those loci of haplotype block hbq within ancestral chromosome

(t, c) where a mutation occurs. The mutational events in (32)
include founder mutations when t = tmax and germline mutations

when t = 0, . . . , tmax − 1. The founder mutations occur with prob-

abilities (26), and the germline mutations probabilities (28). It is
only needed to compute mutational events AMEtcq for those hap-

lotype blocks of chromosome (t, c) that contain ancestral material.

These ancestral haplotype blocks of (t, c) are denoted as

AHBtc = {q; (t, c) ancestral to at least one of

(0, c1), . . . , (0, cn) ∈ ACt at hbq}.
(33)

All other mutations are silent, and not visible in the sampled set

of chromosomes. Figure 7 depicts the ancestral mutational events
and ancestral haplotype blocks for the genealogy of Figure 5.

By gene dropping we mean that the ancestral recombination graph
ARG and the ancestral mutational events AME can be used to
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Figure 8: Illustration of gene dropping for nuclear autosomal DNA. The genealogy is as in Figure 5, with ancestral haplotype blocks and mutational events as
in Figure 7. It is assumed that each haplotype block consists of one single nucleotide, with haplotype href = (C, T,A) of the reference chromosome (t, c) = (2, 1).
Only the ancestral nucleotides (with white or light blue background) are shown for non-reference chromosomes. Mutational events are marked by red, and gene
dropping is shown for all sampled nucleotides that have been mutated somewhere along their ancestral lineages. The sampled haplotypes are h1 = (T, T,A),
h2 = (C, T,A), h3 = (C, T,A), h4 = (C, T,A), h5 = (C, T,G) and h6 = (C, T,C). doi:10.5048/BIO-C.2016.4.f8

spread the alleles of the reference chromosome href to the whole
sample. In other words, href, ARG and AME determine the output

H = (h1, . . . ,hn) (34)

of the algorithm uniquely for each simulation round, where

hk = (ak1, ak2, . . . , akL) (35)

is the haplotype of the kth sampled chromosome (0, ck), see Figure
8 for an illustration.

1.6 Ignoring Double Mutations
If the infinite sites model [140] is assumed, each new mutation
occurs at a locus where there have not been any previous mutations.

Then there is no locus with double mutations, and all polymorphic
loci are biallelic. This makes it possible to speed up the algorithm,
since there is no need to generate a reference haplotype href, nor

to gene drop from the founder generation to find the haplotypes of
the sampled chromosomes. The reason is that in order to compute

the output statistics of Section 1.8, it suffices to keep track of

which chromosomes are descendants of the mutated chromosome
at each polymorphic locus.

We formalize this by introducing the set

SMCl ⊂ {(0, c1), . . . , (0, cn)} (36)

of sampled mutated chromosomes that experience a mutation at
locus l. Obviously SMCl = ∅ for loci without mutations, and for

loci with a single historical mutation, SMCl is the set of descendants

of the mutated ancestral chromosome (see Figure 22 of Section
3.1.2). The absence of double mutations allows us to introduce a

simplified set of two alleles for any locus l (A(l) = {0, 1}), with 0
and 1 corresponding to an unmutated and mutated chromosome
at this locus. Since the reference haplotype href = (0, . . . , 0) has

no mutated sites, it is fixed and need not be evaluated. With “ism”

an acronym for infinite sites model, the output of the algorithm is
a collection

H ism = (hism
1 , . . . ,hism

n ) (37)

of haplotypes
hism
k =

(
aism
k1 , . . . , a

ism
kL

)
(38)

from all sampled chromosomes (0, ck). The allele

aism
kl = 1 ((0, ck) ∈ SMCl) (39)

at locus l equals 1 if and only if a mutation has occurred at this

locus for some ancestor of (0, ck). Since it is only needed to store
(37) at loci where a mutation occurs, it has a much simpler format

than the output (34) of a model with double mutations, see Figure
9.

Figure 9: Illustration of haplotypes for the infinite sites model. The ge-
nealogy is the same as in Figures 5-7, and all three mutations are forced to
occur at distinct loci lA < lB < lC . The haplotypes hism

k in (38) corre-
spond to rows for k = 1, . . . , 6, whereas each column represents a locus.
It is assumed that the single mutation of Figure 7 within chromosome (1, 3)
occurs at lA, whereas the double mutation of Figure 7 is split into two distinct
loci; lB for chromosome (2, 4), and lC for chromosome (1, 6). Mutated al-
leles are depicted as 1, and unmutated ones as 0. It is only needed to store
lA, lB , lC and alleles at these three loci, since all other alleles are 0. The
sets of mutated chromosomes (36) at loci lA, lB , lC are SMClA

= {(0, 1)},
SMClB

= {(0, 5), (0, 6)}, SMClC
= {(0, 6)}, and at all other loci l we have

SMCl = ∅. doi:10.5048/BIO-C.2016.4.f9

It is often reasonable to assume an infinite sites model for single
nucleotide polymorphisms of nuclear DNA, apart from those mu-
tations that occur at hotspot regions. But the mutation rate of
microsatellites is too high to ignore that several repeat changes

will occur at the same locus. On the other hand, for Alu polymor-
phisms in (7), it is usually assumed that each insertion only occurs
in one ancestral chromosome [29]. This makes the infinite sites

model very appropriate, with a reference haplotype without any

polymorphic Alu insertions.

1.7 Summary of Algorithm and Input Parameters
A summary of the combined backward simulation, gene dropping

and mutation generating algorithm is shown in Figure 10 when

double mutations are allowed, with the accompanying input pa-
rameters listed in Table 3. The corresponding simplified algorithm

for the infinite sites model is shown in Figure 11. It only requires
a subset of the input parameters from Table 3.

1.8 Output Parameters
In this section we will look in more detail at the output of the
algorithm. This output consists of haplotypes (34) for all sampled

individuals, and it needs to be summarized in some convenient way.
Table 4 lists a number of statistics that can be computed from (34),
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Table 3: A list of input parameters for the backward simulation algorithm.

Parameter Description

tmax Number of time points back to founder generation. The same

as number of generations back to the founders, if generations
are non-overlapping.

T = (T1, . . . , Ttmax ) A list of all time points.

D = (D0, . . . , Dtmax ) Number of demes/subpopulations at all time points.

M =
(
(Mtd)d=1,...,Dt

)
t=0,...,tmax

Total male deme sizes at all time points.

F =
(
(Ftd)d=1,...,Dt

)
t=0,...,tmax

Total female deme sizes at all time points.

B =
(

(Btd,eg)d=1,...,Dt,e,g=1,...,Dt+1

)
t=0,...,tmax−1

Mating rule, i.e. joint backward migration probabilities of male
and female parents between pairs of demes at all time points.

L Number of loci of the chromosome.

Q Number of haplotype blocks (optional).

α Mating parameter controlling distribution of number of off-
spring of females.

β Mating parameter controlling degree of monogamy.

l = (l1, . . . , lQ−1) Locations of rightmost loci of all haplotype blocks but the last
(optional).

rm = (rm1, . . . , rm,Q−1) Male recombination probabilities.

rf = (rf1, . . . , rf,Q−1) Female recombination probabilities.

γm = (γm1, . . . , γm,Q−1) Male gene conversion probabilities.

γf = (γf1, . . . , γf,Q−1) Female gene conversion probabilities.

TLD Tract length distribution for gene conversion.

ν = (ν1, . . . , νL) Mutation probabilities for non-reference chromosomes of the

founder generation, at all loci.

µ = (µ1, . . . , µL) Mutation probabilities per generation during gamete formation,
at all loci.

π = (πA, πT , πC , πG) or (π1, π2, . . .) Allele frequencies of nucleotides or number of tandem repeats.

P = (Pa,a′ ) Matrix of transition probabilities between all possible different
pairs a, a′ of alleles of a given marker.

n =
(
nmd, nmmd, nfd, nffd

)
d=1,...,D

The number of sampled males and females that contribute

with one or two chromosomes, from D demes (1 ≤ D ≤ D0).
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Figure 10: Directed acyclic graph illustrating the backwards-in-time sim-
ulation algorithm. Fixed or observed quantities are shown in boxes, including
the input parameters from Table 3, the n sampled haplotypes H at present time
0, and the output statistics of Table 4. Since the number of haplotype blocks
Q and their boundaries l are optional input parameters, we frame them with
dashed boxes. Random quantities are shown in circles, and arrows indicate
causal (deterministic or random) relationships. doi:10.5048/BIO-C.2016.4.f10

Figure 11: Directed acyclic graph that illustrates the backwards-in-time
simulation algorithm for an infinite sites model, where double mutations
are ignored. Compared to Figure 10, there is no need to generate a reference
haplotype or do any gene dropping. Fixed or observed quantities are shown
in boxes, including the input parameters from Table 3, the n sampled haplo-
types H ism at time 0, and the output statistics of Table 4. Since the number
of haplotype blocks Q and their boundaries l are optional input parameter, we
mark them as dashed boxes. Random quantities are shown in circles, and ar-
rows indicate causal (deterministic or random) relationships. doi:10.5048/BIO-
C.2016.4.f11

several of which are deme-specific. This is important for model

validation, since real data sets reveal that subpopulations don’t
have the same patterns of DNA variation. A well fitting model

should capture these differences; with separate population histories

for each region in terms of how and when it was colonized, how
its size varied in the past and how much interchange with other

regions it had.

1.8.1 Single Locus Statistics
The single locus statistics summarize information about genetic

diversity, without taking covariation between different loci into
account. The amount of diversity is roughly proportional to the

number of polymporphic loci. Whereas mutations (iv) and created

founder variation (vi) tend to increase diversity, genetic drift (i)
has the opposite effect of decreasing it. The smaller and younger a

population is, the smaller is the amount of genetic diversity. The

frequencies of different alleles at the polymorphic loci form a so
called allele frequency spectrum. It tells how many of the alleles are

common or rare, and it gives additional demographic information
in terms of population size variations, and geographic division into
demes. There are also single locus statistics that quantify how
much variation there is between known subpopulations or demes.

Analytical results for the allele frequency spectrum have been
obtained in [141] for homogeneous population of constant size,
and in [142-145] for populations of time varying size. We will use

simulations instead, since no analytical results have been obtained
for models with two sexes, geographic substructure and time-
varying sizes of the subpopulations. This will require simulation

of separate statistics for each deme. In addition, we also quantify
how genetically different the various demes are.

In order to describe the single locus statistics in more detail, we
assume for simplicity that codon loci are disregarded, so that

the chromosomal region (4) can be divided into two disjoint sets
Lsn and Lms of single nucleotides (3) and microsatellite loci (6),
of sizes Lsn = |Lsn| and Lms = |Lms| (see Figure 3). Let also

Dd ⊂ {1, . . . , n} refer to the set of those k for which the kth

sampled chromosome ck is from an individual of deme d. The
number sampled chromosomes for which allele a ∈ A(l) appears at

locus l in the whole sample, or in subpopulation d, are denoted as

nla = |{k; 1 ≤ k ≤ n, akl = a}|,
nlad = |{k; k ∈ Dd, akl = a}|,

see Table 5 for an illustration.

It is appropriate to treat single nucleotide and microsatellite loci

separately. For single nucleotide loci, we let

π̂a = 1
Lsnn

∑
l∈Lsn

nla,

π̂ad = 1
Lsnnd

∑
l∈Lsn

nlad,

be the estimated fraction of allele a in the whole sample and deme

d, with nd = nmd + nmmd + nfd + nffd = |Dd| the number of
sampled individuals from deme d. Let also

nrallelesl = |{a ∈ A(l); nla > 0}|,
nrallelesld = |{a ∈ A(l); nlad > 0}|, (40)

be the number of different alleles that appear at a single nucleotide
locus l, in the whole sample and deme d.

The amount of genetic variation varies quite a lot within different
people groups. For instance, several Afriacan populations tend to

have more diversity than non-African ones, see for instance [146]
and references therein. In order to quantify how much variation
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Table 4: A summary of output parameters.

Parameter Description

π̂ = {π̂a, a ∈ Asn}, π̂d = {π̂ad; a ∈ Asn} Estimated frequencies for all single nucleotides in the

whole sample, and within deme d.

S, Sd Number of segregating sites in the whole sample and
within deme d.

Π̂, Π̂d Estimated nucleotide diversity in the whole sample and

within deme d.

Φ̂ = {Φ̂j}j=1,...,M , Φ̂d = {Φ̂jd}j=1,...,M Allele frequency spectrum at biallelic loci in the whole

sample and within deme d, for M frequency classes.

FST = {FST,de}1≤d<e≤D Fixation indeces between all pairs of D demes.

r2 = {r2j }j=1,...,K , r2d = {r2jd}j=1,...,K Average squared correlation LD measure between pairs
of biallelic loci at K different distances, for the whole

sample and within deme d.

CLDP = {CLDPj}Kj=1, CLDP d = {CLDPjd}Kj=1 The complete LD proportion of all pairs of biallelic loci

at distance within each of K different classes, for the
whole sample and within deme d.

Table 5: Allele counts for the six chromosomal region copies of Figure 3. An allele a either refers to a nucleotide (A,C,G, T ) or a number of tandem repeats
(1, 2, 3, . . .). The upper part of the table gives the allele counts nla for the two demes d = 1, 2 combined. The middle and lower parts of the table give the allele
counts nlad for each of the two demes.

Locus l
Sample Allele 1 2 3 4 5 6 7 8 9

Comb A 0 3 0 0 0 0 0 0 6
C 6 0 0 0 2 6 0 3 0

G 0 0 6 0 4 0 0 2 0
T 0 3 0 6 0 0 0 1 0
1 0 0 0 0 0 0 2 0 0
2 0 0 0 0 0 0 2 0 0

3 0 0 0 0 0 0 2 0 0

Sum 6 6 6 6 6 6 6 6 6

Deme 1 Allele 1 2 3 4 5 6 7 8 9

A 0 3 0 0 0 0 0 0 4
C 4 0 0 0 2 4 0 1 0

G 0 0 4 0 2 0 0 2 0

T 0 1 0 4 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 2 0 0
3 0 0 0 0 0 0 1 0 0

Sum 4 4 4 4 4 4 4 4 4

Deme 2 Allele 1 2 3 4 5 6 7 8 9

A 0 0 0 0 0 0 0 0 2

C 2 0 0 0 0 2 0 2 0
G 0 0 2 0 2 0 0 0 0

T 0 2 0 2 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0

Sum 2 2 2 2 2 2 2 2 2
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there is in the whole human population, or within a subregtion

(deme) d, we can use the number of segregating sites

S = |{l ∈ Lsn; nrallelesl > 1}|,
Sd = |{l ∈ Lsn; nrallelesld > 1}|, (41)

in the whole sample and in deme d. This is the same thing as

the number of single nucleotide polymorphisms (SNPs). Two
related quantities are the nucleotide diversities Π and Πd [147-

148]. In our context they can be interpreted as the probabilities

that two randomly chosen different chromosomes, from the whole
population or from deme d, have different alleles at a randomly

selected locus. The observed human nucleotide diversity Π̂ of

nuclear DNA is around 0.08% [149-151], although it is highest for
non-sex chromosomes, lower for X chromosomes, and smallest for

Y chromosomes. For mitochondrial DNA it is higher, about 0.25%

[29].

For autosomal DNA, the nucleotide diversity can be estimated as

Π̂ = 1
Lsn

∑
l∈Lsn

[
1−

∑
a∈Asn

π̂la
2π̂laN0−1
2N0−1

]
,

Π̂d = 1
Lsn

∑
l∈Lsn

[
1−

∑
a∈Asn

π̂lad
2π̂ladN0d−1

2N0d−1

]
,

(42)

for the whole population or within deme d. Here π̂la = nla/n and
π̂lad = nlad/n are the estimated frequencies of allele a at locus

l, globally or locally within deme d respectively. The rationale of
(42) is that autosomal DNA has 2N0 chromosomes in the total
population at present, of which 2N0d belong to deme d. A fraction

πla (πlad) of these chromosomes carry allele a at locus l, and π̂la
(π̂lad) are estimates of these quantities derived from the sample.
Since there is only a single copy of Y -chromosome and one kind

of mitochondrial DNA per individual, the 2 factors of (42) are
removed.

Let
Lba = {l ∈ Lsn; nrallelesl = 2},
Lba,d = {l ∈ Lsn; nrallelesld = 2}

be the set of biallelic loci in the whole sample and in deme d,
and write Sba = |Lba| and Sba,d = |Lba,d| for the corresponding
number of segregating biallelic sites. At such loci it is of interest

to compute estimates of the minor allele frequencies

M̂AFl = min{nla; a ∈ A(l), π̂la > 0}/n,
M̂AFld = min{nlad; a ∈ A(l), π̂la > 0}/nd.

(43)

In order to quantify the allele frequency spectrum, we will summa-

rize the minor allele frequencies at all biallelic loci. This is achieved
by dividing the frequency range π ∈ [0, 0.5] into M equispaced
intervals Pj = [(j − 1)/(2M), j/(2M)] of length 1/(2M). With φ

and φd the minor allele frequency densities in the whole population

and in deme d, we estimate the fraction of biallelic loci

Φj =
∫
Pj
φ(π)dπ,

Φjd =
∫
Pj
φd(π)dπ

that belong to interval j, by

Φ̂j = |{l ∈ Lba; M̂AFl ∈ Pj}|/Sba,

Φ̂jd = |{l ∈ Lba; M̂AFld ∈ Pj}|/Sba,d,
(44)

for j = 1, . . . ,M . Table 6 shows the frequency spectrum with

M = 5 intervals, for a standard model with constant population
size and no geographic subdivision [149]. Population increase and

subdivision will both have the effect of increasing the frequency

of rare variants even more, whereas a recent bottleneck has the
opposite effect of reducing their number. It is well known that many

human subpopulations have an excess of rare variants compared
to the standard model. It is likely that recent population increase

Table 6: Allele frequency spectrum under a standard neutral model of
evolution. There is no subpopulation division and population size is constant
over time. The interval with the smallest frequency range has been truncated,
so that only SNPs with a minor allele frequency of at least 0.01 are included.

MAF interval Pj Frequency Φj

(0.01,0.10) 0.522
(0.10,0.20) 0.177

(0.20,0.30) 0.117
(0.30,0.40) 0.096
(0.40,0.50) 0.088

is the most important explanation [152,153]. Since population

histories vary between regions d, their allele frequency spectra will
not be the same. For instance, many African populations tend

to have a slightly smaller fraction of common variants [21,23,154]

compared to non-African ones.

It is also important to assess how genetically different the various

demes are. To this end, we define a fixation index FST,de for each
pair d, e of demes from which samples are taken (1 ≤ d < e ≤ D).

This is a number between 0 and 1 that quantifies genetic difference
between the two demes [52,155]. Its multilocus and multiallelic
version is defined as

FST,de =

∑
l

∑
a

1
2

[
(π̂lad − π̄lade)2 + (π̂lae − π̄lade)2

]∑
l

[
1−

∑
a π̄

2
lade

] , (45)

where the outer and inner sums are taken over all single nucleotide

loci (l ∈ Lsn) and all alleles at each locus (a ∈ A(l)) respectively,
and π̄lade = (π̂lad + π̂lae)/2 is the average frequency of allele a at
locus l in the two demes d and e.

The diversity statistics in (41) and (42) are defined in the same

way for microsatellite loci, but the allele frequency spectrum is
more complicated, so that (44) is not used. Instead, a number
of other statistics are defined in [15,16] and references therein

from the observed distribution of number of tandem repeats. The
subpopulation differentiation statistic, FST , is usually replaced by
another quantity RST defined in [156] for microsatellites, or by a

closely related distance measure between subpopulations [157].

Any of the output statistics in (41)-(45) are appropriate for the
infinite sites model (including Alus), since all of its mutated loci

are biallelic.

1.8.2 Statistics for Pairs of Loci
Covariation of alleles in a population between different loci (linkage

disequilibrium, LD) is summarized by various statistics. LD is

caused by a number of different factors [158], but among the
forces of change introduced in Section 1.4, it basically occurs as a

balance between genetic drift (i), admixture of/migration between

subpopulations (iii) and founder diversity (vi) on one hand, and
recombinations (ii) on the other. Whereas genetic drift, migration

and founder diversity tend to increase LD, recombinations tend to
decrease it. Statistics that quantify allelic covariation at several

loci therefore complement those in Section 1.8.1 for single loci,

which mainly quantify another balance - between genetic drift and
mutations. The level of LD over shorter or longer distances is

highly influenced by demographic history, such as the age of a

population, rapid size expansions, severe bottlenecks or geographic
substructure. This is known both from simulations [151,159] and

theoretical investigations [160]. The amount of LD between closely

located markers, on one hand, give information about human
demography in the more distant past [161], whereas the degree

of LD between distant markers reflect more recent demographic
events [162].
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Table 7: A table with two rows and two columns showing counts for all
four haplotypes from two biallelic loci. These loci are denoted l and l′.

a′ b′ Sum

a nll′aa′ nll′ab′ nla
b nll′ba′ nll′bb′ nlb

Sum nl′a′ nl′b′ n

Table 8: Measures of association between two of the loci of Figure 3.
These are the only two loci l = 2 and l′ = 5 that correspond to a single
nucleotide that is biallelic. The upper part of the table gives twolocus haplotype
counts n25aa′ , n25aa′,1 and n25aa′,2 for the whole sample, deme d = 1

and deme d = 2 respectively. The haplotypes (a, a′) consist of two alleles,
one from each of l and l′. The lower part quantifies dependency between the
two loci in terms of the unstandardized and standardized measures of linkage
disequilibrium. The two standardized measures (r2, D′) are not well-defined
for d = 2, since locus l′ = 5 is not biallelic within this deme.

Hapl Haplotype Comb Deme 1 Deme 2
counts (a, a′) n25aa′ n25aa′,1 n25aa′,2

(A,C) 1 1 0
(A,G) 2 2 0
(T,C) 1 1 0
(T,G) 2 0 2
Sum 6 4 2

Depen-
dency LD measure Comb Deme 1 Deme 2

δ25,· 0 -2 0
r225,· 0 2/3 -

D′25,· 0 1 -

We will focus on statistics for pairs of biallelic loci (typically a

single nucleotide), which is appropriate, for instance, for the infinite

sites model. Several measures of LD for pairs of biallelic loci exist,
see for instance [163] and Chapter 8 of [164]. We concentrate of

two of the most commonly used, the squared correlation coefficient

r2 and Lewontin’s D′. They are computed between loci at various
distances, for the whole population and within each deme. It

is also possible to use the population recombination rate. This
measure of LD is more sophisticated than r2 and D′, but also
more complicated to estimate, and in particular it requires some

assumptions about the population history [110].

In order to define statistics for pairs of loci, let nll′aa′ be a two-

locus haplotype count, i.e. the number of sampled chromosomes
(0, ck) that have haplotype (a, a′) at two biallelic loci l, l′ ∈ Lba

(that is, akl = a and akl′ = a′). If a, b and a′, b′ are the two alleles

present at l and l′, we may summarize all haplotype counts from
these two loci as in Table 7. Haplotype counts nll′aa′,d for the

subsample of deme d = 1, . . . , D are defined in the same way.

The coefficients of linkage disequilibrium

δll′ = nll′aa′nll′bb′ − nll′ba′nll′ab′ ,
δll′,d = nll′aa′,dnll′bb′,d − nll′ba′,dnll′ab′,d,

(46)

are unstandardized measures of dependency of the allelic variation

at l and l′, for the whole sample and deme d, with values of 0
corresponding to independence (see Table 8 for an illustration).

The squared correlation coefficient

r2
ll′ = δ2

ll′/(nlanlbnl′a′nl′b′ ),

r2
ll′,d = δ2

ll′,d/(nla,dnlb,dnl′a′,dnl′b′,d),

and Lewontin’s

D′
ll′ = |δll′ |/δmax,ll′ ,

D′
ll′,d = |δll′,d|/δmax,ll′,d,

(47)

are different standardizations of (46), with values between 0 and 1,

for the whole population and for each deme d. Both quantities are
0 for allelic independence between loci l and l′, and larger values

indicate a stronger association. The denominator of (47) is

δmax,ll′ =

{
min(nlanl′b′ , nlbnl′a′ ), if δll′ > 0,
min(nlanl′a′ , nlbnl′b′ ), if δll′ < 0,

(48)

for the whole sample, and δmax,ll′,d is defined analogously within

deme d. Complete LD means that one of the four haplotype counts
of Table 7 are absent. It commonly occurs between two nearby loci
l and l′, when one of them has recently mutated. The normalization
in (48) implies that D′

ll′ equals 1 for complete LD. This is not the

case for r2
ll′ , which is smaller than 1 even for complete LD, unless

the allele frequencies at the two loci l and l′ are the same.

Since recombinations tend to break up LD, and the expected

number of recombinations is larger between more widely separated
pairs l, l′ of loci, r2

ll′ and D′
ll′ are both, on average, decreasing

functions of the distance between l and l′, although the variation is

large. This decay of average LD with distance can be estimated by
dividing all pairs of loci within a certain range or maximal distance

(md) into K distance classes

Lpairs

j = {l, l′ ∈ Lba; j−1
K
·md < |l − l′| ≤ j

K
·md},

Lpairs

jd = {l, l′ ∈ Lba,d; j−1
K
·md < |l − l′| ≤ j

K
·md},

for j = 1, . . . ,K, with typical values md = 100 kb and K = 40.
Then

r2j = 1

|Lpairs
j |

∑
l,l′∈Lpairs

j
r2
ll′ ,

r2jd = 1

|Lpairs
jd

|

∑
l,l′∈Lpairs

jd

r2
ll′,d,

(49)

is the average value of r2 for all pairs of loci at a distance within
class j, for the whole sample and deme d. In order to get a measure

of LD that is more complementary to r2, we follow [23] and define
the Complete LD Proportion

CLDPj = 1

|Lpairs
j |

∑
l,l′∈Lpairs

j
1(D′

ll′ = 1),

CLDPjd = 1

|Lpairs
jd

|

∑
l,l′∈Lpairs

jd

1(D′
ll′,d = 1),

(50)

i.e. the proportion of pairs of loci within each distance class that
are in complete LD (D′

ll′ = 1), with 1(A) equal to 1 if A holds and
0 otherwise.

The deme-specific LD measures in (49) and (50) will reflect differ-

ences in population histories. For instance, it is well known that
linkage disequlibrium extends over longer distances in non-African
populations compared to African ones [78,109,149].

The average LD measures in (49) and (50) are simple, but have
a disadvantage of clumping chromosomal regions with short and
long range LD into one statistic. This can be avoided by focusing

on recombination based genetic map distance classes rather than
physical distance classes that are defined in terms of number of

base pairs [23,159]. The expected r2j values in (49), for instance,

are inversely related to the probability of recombination between
the two loci [165]. However, since recombination probabilities are
more difficult to estimate over short distances, we use physical

distance classes instead.

When haplotype blocks are not specified in advance, we can use the

number of haplotype blocks Q as output statistic [115]. Although Q
is simpler than the LD measures (49) and (50), is roughly conveys

the same information, since it is inversely proportional to how far
away linkage disequilibrium extends.
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1.9 Model Fitting and Validation
In order to fit and validate our model, one training data set and

one validation data set is needed. The training data set

Htrain = (htrain
1 , . . . ,htrain

n ) (51)

consists of haplotypes from a number of individuals. Since our

model contains a large number of parameters θ, it is very challeng-

ing to estimate θ from training data by simulation-based maximum
likelihood or Bayesian techniques, see for instance [25,166-168] and

references therein.

We will use a simpler approach that is similar to the one in [23],
where θ is tuned so that a number of output statistics

Xtrain
u = (Xtrain

u1 , . . . , Xtrain
uVu

), u = 1, . . . , U, (52)

of Table 4 for the training data set (51) get as close as possible to
the corresponding output statistics

Xu = (Xu1, . . . , XuVu ), u = 1, . . . , U, (53)

computed from R simulated sets. These simulated data sets are

either generated from (34), if double mutations are accounted for,
or from (37), if double mutations are ignored. Scalar statistics such
as the deme-specific number of segregating sites Sd and nucleotide

diversity Π̂d have only one component (Vu = 1), the fixation index
FST has one component for each pair of demes (Vu = D(D−1)/2),
the deme-specific allele frequency spectrum Φ̂d has one component

for each allele frequency class (Vu = M), and the deme-specific
LD statistics r2d and CLDd have one component for each distance
class (Vu = K).

One option is to choose U = 5D + 1 statistics in (53), including

FST , and Sd, Π̂d, Φ̂d, r2d, CLDd for all demes d = 1, . . . , D. A

simpler option is to use only FST , and all Φ̂d, r2d. The reason is
that the two LD measures are correlated, and the extent of LD
is inversely related to the nucleotide diversity and the number of

segregating sites [151].

Let

H(r) = (h
(r)
1 , . . . ,h

(r)
n )

be the simulated haplotypes (34) or (37) for all sampled chromo-

somes in repeat r, and X
(r)
uv the value of the vth component of the

uth output statistic for the same repeat. We summarize these R
output statistics, for each u, v, by their sample mean and sample
variance

Xuv =
∑R
r=1X

(r)
uv /R,

σ2
uv =

∑R
r=1(X

(r)
uv −Xuv)2/(R− 1).

It is also possible to estimate σ2
uv from the empirical data set by

resampling [23]. In any case, the goodness of fit is defined as

∆u =

√√√√ 1

Vu

Vu∑
v=1

(Xtrain
uv −Xuv)2

σ2
uv

,

for statistic number u, and

∆ =

√√√√ U∑
u=1

∆2
u (54)

for all statistics combined. A scenario is chosen by adjusting the
parameters in θ so that ∆ gets as small as possible. A value around

∆ = 1 for the chosen parameters signifies a perfect fit, and the
larger ∆ > 1 is, the poorer is the fit.

Figure 12: Illustration of how a directed acyclic graph is built recur-
sively in time. The graph is a subpart of Figure 10, and in each step
t = 0, . . . , tmax − 1, members of the pedigree at time point t are assigned
parents at time t + 1. Then Mendelian inheritance and recombination events
generate the ancestral recombination graph ARG for time point t + 1, before
updating time and assigning parents or self numbers to this time point. Fixed
input parameters (see Table 3) appear in boxes, random quantities are shown
in circles, and arrows indicate causal (deterministic or random) relationships.
The number of haplotype blocks Q is an optional input parameter and appears
in a dashed box. doi:10.5048/BIO-C.2016.4.f12

In order to validate the model, we compute a quantity ∆val in the

same way as in (54), using the output statistics of a validation

data set

Hval = (hval
1 , . . . ,hval

n )

from another chromosome, and R simulated data sets. These
simulations are based on the model that was fitted to the training

data set, possibly changing some chromosome-specific parameters,
such as recombination or mutation rates.

If data is not sampled randomly, it is important for model fitting
and model validation that the simulated and real data sets are

ascertained in the same way, both in terms of which individuals
and loci that are sampled. If the ascertainment mechanism for the
real data set is known, some polymorphic loci of the simulated

data sets can be removed, as described in Section 3.3. A common
non-random sampling mechanism (for instance in the HapMap

data sets) is that more polymorphic loci have a higher sampling

probability than the less polymorphic ones.

2. GENERATING ANCESTRY
In this section we give a detailed description of how the ancestral
recombination graph ARG is generated. It requires a pedigree of

individuals and how DNA is inherited in this pedigree, in particular
recombination events between the haplotype blocks of the ancestral

chromosomes, see Figure 12.

The ARG in (17) starts at time point t = 0, with

ARG0kq = ck

for the kth sampled chromosome ck at haplotype block hbq. In

order to initiate the ARG, we thus need to specify all ck. This

numbering of sampled chromosomes will depend on DNA type as
well as the sample size numbers in (15). For nuclear autosomal

DNA it seems most natural, in order to use all available data, to
include both chromosomes of within a sampled male or female.
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Then there is no need to specify, for any chromosome that did not

have its homologous copy in the sample, whether it was inherited
from a grandfather or grandmother. For these reasons, we assume

nmd = nfd = 0 for all demes d, so that the total sample size (16)

simplifies to n = 2
∑D
d=1(nmmd + nffd). If the sampled males

and females are assigned the lowest numbers at time 0 within their
sex, we get

ck =

{
k, k = 1, . . . , 2nmm,

2M0 + k − 2nmm, k = 2nmm + 1, . . . , n.
(55)

The numbering of chromosomes is similar for other types of DNA.

Since Y chromosomes are not sampled within females and only
one is sampled per male, we put nmmd = nffd = nfd = 0, so

that the total number of sampled haplotypes n =
∑D
d=1 nmd are

taken from chromosomes ck = 2k − 1, k = 1, . . . , n. Mitochondrial

DNA is only sampled one per female, so that nmmd = nmd =
nffd = 0, n =

∑D
d=1 nfd, and ck = 2M0 + 2k for k = 1, . . . , n. X

chromosomes, finally, are sampled one per male and two per female,

so that nmmd = nfd = 0, n =
∑D
d=1(nmd + 2nffd), ck = 2k for

k = 1, . . . , nm, and ck = 2M0 + (k − nm) for k = nm + 1, . . . , n,
where nm =

∑D
d=1 nmd is the total number of sampled males.

Once the ancestral recombination graph has been generated for
time point t = 0, we need to specify individuals of the pedigree and
inheritance of their DNA, recursively back in time t = 0, 1, . . . , tmax.

In order to describe the pedigree, we introduce for each t the set

AIt = {1, . . . ,mt,Mt + 1, . . . ,Mt + ft} (56)

of ancestral individuals that are alive at this time point t. It
consists of mt ≤Mt males and ft ≤ Ft females, assuming without

loss of generality that males and females of each time point are
numbered so that the ancestral ones come first. An individual
i ∈ AIt if at least one of its two chromosomes is ancestral. That
is, i ∈ AIt if either the chromosome c = 2i − 1 that i inherited

from its father belongs to ACt, or if the chromosome c = 2i that i

inherited from its mother does.

The pedigree is a directed acyclic graph on AIt. The details of

how it is built can be found in Section 2.1. Briefly, as we proceed
backwards in time t = 0, 1, . . . , tmax, in the recursive step from t
to t+ 1, we need to specify for each ancestral individual i ∈ AIt
that is a newborn, at a time point before the founder generation
t < tmax, its two male and female parents

mt(i) ∈ {1, . . . ,Mt+1},
ft(i) ∈ {1, . . . , Ft+1},

(57)

see Table 9 for an example. All non-founders in this table have
ancestral parents. This is not always the case though. A necessary

and sufficient condition for an individual at time t+1 to be ancestral
is that he or she is the parent of at least one ancestral individual

at time t, and transmitted at least one haplotype block to a child

for which this block is ancestral. In view of (56), this implies

mt(i) ∈ {1, . . . ,mt+1}, iff 2i− 1 ∈ ACt
for at least one his children i,

ft(i) ∈ {1, . . . , ft+1}, iff 2i ∈ ACt
for at least one her children i,

(58)

where iff is short for “if and only if”. If the population size Nt =

Mt+Ft is large for many time points, it is very important to prune
the pedigree by removing non-ancestral individuals. Otherwise the

computational advantage of backward simulation diminishes, as

the pedigree size quickly increases when time proceeds backwards
[169,170]. Pruning ensures that only those parents (57) that satisfy

(58) are part of the pedigree. This is described in detail in Section
2.1, and here we assume that the pedigree has been pruned.

Table 9: Numbers associated with individuals for the pedigree in the
lower part of Figure 4. This includes order number mt(i) of the father, or-
der number ft(i) of the mother, and deme number dt(i) for all newborn non-
founders (t, i) of the pedigree. For the adult female ((t, i) = (0, 2)), the self
number st(i) is displayed instead of the parental order numbers.

(t, i) mt(i) ft(i) st(i) dt(i)

(0,1) 2 2 - 2

(0,2) - - 2 2
(0,3) 1 1 - 1

(1,1) 1 1 - 1

(1,2) 1 1 - 2
(1,3) 1 1 - 1

(1,4) 1 1 - 2

All individuals are newborns for a population with non-overlapping

generations. But if generations are overlapping there are adults,
whose parents were born more than one time step earlier. Since

each adult i ∈ AIt existed at time Tt+1, it is assigned a “self

number”

st(i) ∈ {1, . . . ,mt+1,Mt+1 + 1, . . . ,Mt+1 + ft+1}
= AIt+1,

(59)

rather than a father mt(i) and mother ft(i), regardless of whether
the parents of (t, i) were still alive at time Tt+1.

The set of ancestral individuals AIt+1 at time Tt+1 is completely

specified, once we have defined parents (57) of newborns or self
numbers (59) for adults, for all i ∈ AIt, and then removed all of
these individuals that are non-ancestral. Before generating parents

and self numbers for the next time point Tt+2, we must first
define how parental DNA from time point Tt+1 was transmitted
from parents to newborns. If (t, c) is an ancestral chromosome

(c ∈ ACt) of a non-founder time point t < tmax, it has at least
one ancestral haplotype block. Such a chromosome (t, c) resides
within individual i = [(c + 1)/2] ∈ AIt, and its haplotype block
hbq (whether ancestral or not) was inherited from chromosome
(t+ 1, ptq(c)) at time t+ 1, where

ptq(c) = number of the chromosome in ACt+1

that is parental to (t, c) at hbq .

For DNA of an ancestral chromosome (t, c) within a newborn
i = [(c+1)/2] that is either mitochondrial, from an Y chromosome,
or from an X chromosome within a female and inherited from a
father, we know not only whether i received this DNA from the

father mt(i) or the mother ft(i), but also which grandparent that

transmitted DNA through this parent to i. If (t, c) is inherited
from a father (c odd), we can formalize this as

ptq(c)
c odd

=

{
2mt

(
[ c+1

2
]
)
− 1,

2mt
(
[ c+1

2
]
)
,

(60)

where the upper and lower rows on the right hand side of (60)

are for Y DNA and X DNA of a female respectively, since a
father always passes on its Y chromosome to the child from the
grandfather and its X chromosome from the grandmother. For a

chromosome (t, c) inherited from a mother (c even), we have

ptq(c)
c even

= 2Mt + 2ft

(
[
c+ 1

2
]

)
, (61)

for mt DNA, since mitochondria are always inherited through the

mother from her mother. On the other hand, for autosomal DNA,

X chromosome DNA within males, or X chromosome DNA that
a female inherited from her mother, we need to specify which of

its two chromosomes each of the two parents in (57) passed on
to the child at each haplotype block hbq. In order to determine
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these parental chromosome numbers we use Mendelian laws of

inheritance. For a chromosome (t, c) inherited from a father (c
odd), these laws imply that the parental chromosome has number

Prob(ptq(c) = c′)
c odd

=

{
0.5, c′ = 2mt

(
[ c+1

2
]
)
− 1,

0.5, c′ = 2mt
(
[ c+1

2
]
)
,

(62)

for autosomal DNA, depending on whether a grandpaternal or

grandmaternal chromosome was transmitted at haplotype block
hbq from time t+ 1 to t. In the same way, a parental chromosome

that (t, c) inherited from a mother (c even) has number

Prob(ptq(c) = c′)
c even

=

{
0.5, c′ = 2Mt + 2ft

(
[ c+1

2
]
)
− 1,

0.5, c′ = 2Mt + 2ft
(
[ c+1

2
]
)
,

(63)

for autosomal or X DNA. It is much easier to assign parental
chromosomes if (t, c) resides with an adult i = [(c + 1)/2]. We
only need to know the self number in (59), and whether c was

transmitted from a father (c odd) or mother (c even). Formally
we write this as

ptq(c) = 2st

([
c+ 1

2

])
− 1 + 1(c even), (64)

for q = 1, . . . , Q. As a next step, for autosomal or X chromosome

DNA we generate recombination events between haplotype blocks.
To this end, we first assume that all haplotype blocks are known
in advance, and write the haplotype block boundaries as

hbb = {hbb1, . . . , hbbQ−1}.
The qth haplotype block boundary hbbq is located between the
adjacent pair hbq and hbq+1 of haplotype blocks, that is, between
loci lq and lq + 1. For each ancestral chromosome (t, c) ∈ AC of a

non-founder time point, we let

RECtc ⊂ hbb (65)

refer to the set of haplotype block boundaries at which a recom-

bination event (that is, an odd number of crossovers) occurred
when the first copy of (t, c) was formed in a germ cell. There are
no recombination events (RECtc = ∅) for adults, or for DNA of

newborns that is located within mitochondria, the non-recombining
parts of Y chromosomes (NRY), or X chromosomes from fathers.
On the other hand, for DNA within newborns that is located

within an autosome or within an X chromosome that is inherited
from a mother, RECtc describes how the parental chromosome

in (62)-(63) switches between grandpaternal and grandmaternal

modes of inheritance, including both single recombination and
gene conversion events. Section 2.2 describes in more detail how

to generate RECtc.

Thus, in order to define ptq(c) at all haplotype blocks hbq we may
first use Mendelian laws and specify pt1(c) for the leftmost block

hb1 according to any of (60)-(64), depending on whether (t, c) is

inherited from a father or a mother. Then we use (65) to specify
ptq(c) recursively at all other haplotype blocks hbq according to

ptq(c) = pt,q−1(c), if hbbq−1 /∈ RECtc,
ptq(c) 6= pt,q−1(c), if hbbq−1 ∈ RECtc,

(66)

for q = 2, . . . , Q. Once ptq(c) has been specified for all ancestral

chromosomes (t, c) at all haplotype blocks hbq, we have enough
information to generate the ancestral recombination graph (17)

and all ancestral haplotypes blocks (33) at time Tt+1. When this
is repeated backwards in time we get the algorithm of Figure 13.

See also Table 10 for an illustration of concepts, for the genealogy

of Figures 4-7.

After this general overview of how to generate the ancestral recom-
bination graph, it remains to describe in more detail how to build

the pedigree (assigning parents and selfing numbers, and removing
non-ancestral parents), how to define recombination events, and

how the algorithm is modified when the haplotype blocks are not

known in advance. These are the topics of Sections 2.1-2.3.

2.1 Building the Pedigree
We will generalize the backward simulation method for pedigrees
in [99], allowing the population to have a time-varying size and

different types (geographic or age) of substructure. This will be

done in steps, starting with a homogeneous population.

2.1.1 Homogeneous Population
The nodes of the pedigree are the ancestral individuals

AI = {(t, i); 0 ≤ t ≤ tmax, i ∈ AIt}

at all time points, of which those in AIt live at time t, cf. (56). For

a population with non-overlapping generations without geographic
substructure, each individual (t, i) ∈ AI of a non-founder generation

(t < tmax) has two upward edges, to the father mt(i) and mother

ft(i), cf. (57), and there is no need to determine in which deme
(t, i) lives. In order to build the pedigree we proceed recursively

and start with those individuals AI0 that belong to the current
generation (t = 0). They are

AI0 =


{1, . . . , nmm,M0 + 1, . . . ,M0 + nff},
{1, . . . , nm},
{1, . . . , nm,M0 + 1, . . . ,M0 + nff},
{M0 + 1, . . . ,M0 + nf},

(67)

for autosomal, Y -, X- and mitochondrial DNA respectively, with
nm, nf , nmm and nff defined as in (15). Given that AIt has
been specified for 0 ≤ t < tmax, we will generate AIt+1 (which, in

view of (56), is completely specified by mt+1 and ft+1), the edges
between AIt and AIt+1, and the number of children

Ct+1,f = |{i ∈ AIt; ft(i) = f}|,
for f = 1, . . . , ft,

Ct+1,mf = |{i ∈ AIt; mt(i) = m, ft(i) = f}|,
for m = 1, . . . ,mt, f = 1, . . . , ft,

of all mothers and couples of generation t+ 1. All these quantities

will be computed recursively, by selecting parents for all i ∈ AIt.
Suppose i ∈ AIt is preceded by 0 ≤ j = j(i) < |AIt| other
individuals of AIt, which have already been assigned parents. Then

choose parents (mt(i), ft(i)) of (t, i) according to a Polya urn
scheme [171], with probabilities

Prob(mt(i) = m, ft(i) = f)

=



α+Ct+1,f

Ft+1α+j
· β+Ct+1,mf

Mt+1β+Ct+1,f
, (I)

α+Ct+1,f

Ft+1α+j
· β(Mt+1−mt+1)

Mt+1β+Ct+1,f
, (II)

α(Ft+1−ft+1)

Ft+1α+j
· 1
Mt+1

, (III)

α(Ft+1−ft+1)

Ft+1α+j
· Mt+1−mt+1

Mt+1
, (IV)

(68)

where
∑
f Ct+1,f = j and

∑
m Ct+1,mf = Ct+1,f . The rows on

the right hand side of (68) represent the four possible combinations

(I) : m ≤ mt+1, f ≤ ft+1,
(II) : m = mt+1 + 1, f ≤ ft+1,

(III) : m ≤ mt+1, f = ft+1 + 1,
(IV) : m = mt+1 + 1, f = ft+1 + 1,

as to whether the father m and mother f of (t, i) have previously

been assigned children or not. Figure 14 illustrates how (68) is
used to add parents in generation t + 1 to all members of the

pedigree in generation t.

After these steps we have a set

AICt+1 = {1, . . . ,mt+1,Mt+1 + 1, . . . ,Mt+1 + ft+1} (69)
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INITIALIZIZATION t = 0
Define AI0 as in (67)
Assign deme numbers d0(i) to all i ∈ AI0 from (75)
AC0 = {c1, . . . , cn}
FOR k = 1 TO n

AHB0ck
= {1, . . . , Q}

FOR q = 1 TO Q
ARG0kq = ck

END
END

END
FOR t = 0, . . . , tmax − 1

Generate parents mt(i), ft(i) or selfing numbers st(i) for all i ∈ AIt (*)
Define AIt+1 as all st(i) and all parents in previous step that are ancestral (**)
Record the deme number dt+1(i) of all i ∈ AIt+1

ACt+1 = ∅
FOR all c ∈ ACt DO

Compute pt1(c) according to (60), (61), (62), (63) or (64)
Generate recombination events RECtc (***)

Compute {ptq(c)}Qq=2 according to (66)

FOR all c′ ∈ {ptq(c); q ∈ AHBtc} DO
ACt+1 ← ACt+1 ∪ {c′}

END
END
FOR all c ∈ ACt+1 DO

AHBt+1,c = ∅
END
FOR k = 1 TO n

FOR q = 1 TO Q
c = ptq(ARGtkq)
ARGt+1,kq = c
AHBt+1,c ← AHBt+1,c ∪ {q}

END
END

END

Figure 13: Algorithm for generating the ancestral recombination graph (ARG) and ancestral haplotype blocks (AHB), when haplotype blocks are
specified in advance. The initiation of ancestral chromosomes AC0 will depend on DNA type, such as (55) for autosomes, and in the text below this formula for
other types of DNA. The lines marked (*) and (**) are explained in more detail in Section 2.1, and the line marked (***) in Section 2.2. doi:10.5048/BIO-C.2016.4.f13

Table 10: Inference of recombination events and inheritance patterns from the ancestral recombination graph (ARG). For each non-founder chromosome
(t, c) of the pedigree in the lower part of Figure 4, the ARG of Figure 5 is used to obtain partial information about its recombination events RECtc and paternal
chromosomes ptq(c) at all haplotype blocks hbq . The last three columns specify which haplotype blocks of (t, c) that are ancestral (∈ AHBtc), precisely those
that are colored as white or light blue in Figure 7. We notice that ptq(c) is known for all ancestral haplotype blocks.

(t, c) RECtc ptq(c) q ∈ AHBtc?
q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

(0,1) {1, 2} 3 4 3 Yes Yes Yes
(0,2) {2} 7 7 8 Yes Yes Yes
(0,3) ∅ 7 7 7 Yes Yes Yes
(0,4) ∅ 8 8 8 Yes Yes Yes
(0,5) {2} 1 1 2 Yes Yes Yes
(0,6) ∅ 6 6 6 Yes Yes Yes
(1,1) {1} 1 2 ? Yes Yes No

{1, 2}
(1,2) ? ? ? 4 No No Yes
(1,3) {1} 1 ? 2 Yes No Yes

{2}
(1,4) ? ? 3 ? No Yes No
(1,5) ? ? ? ? No No No
(1,6) {2} 3 3 4 Yes Yes Yes
(1,7) {2} 2 2 1 Yes Yes Yes
(1,8) {1} 4 3 3 Yes Yes Yes
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INITIATE
j = 0
mt+1 = ft+1 = 0
Ct+1,f = Ct+1,mf = 0 for all m, f

END
FOR all i ∈ AIt DO

SELECT (mt(i), ft(i)) with probabilities as in (68)
j ← j + 1
mt+1 ← mt+1 + 1 for cases II and IV
ft+1 ← ft+1 + 1 for cases III and IV
Ct+1,ft(i)

← Ct+1,ft(i)
+ 1

Ct+1,mt(i)ft(i)
← Ct+1,mt(i)ft(i)

+ 1
END

Figure 14: Algorithm for adding parents to a pedigree. The population is
homogeneous with non-overlapping generations, and it is shown how all indi-
viduals in generation t are assigned parents. The algorithm corresponds to line
(*) of Figure 13. doi:10.5048/BIO-C.2016.4.f14

INITIALIZE
Define mt and ft from the algorithm of Figure 14
Define the ancestral individual candidates AICt+1 according

to (69)
Initiate ancestral function: At+1(i) = 0 for all i ∈ AICt+1

END
FOR all i ∈ AIt DO

IF 2i− 1 ∈ ACt

At+1(mt(i)) = 1
END
IF 2i ∈ ACt

At+1(Mt + ft(i)) = 1
END

END
Compute m′t+1 and f ′t+1 from (70)
Compute permutations τm and τf as in (71)
Update all mt(i) and ft(i) as in (72)
Update mt and ft as in (72)
Compute AIt from (56)

Figure 15: Pruning of non-ancestral individuals. The algorithm above
removes the non-ancestral parents of individuals from generation t. It corre-
sponds to line (**) of Figure 13. doi:10.5048/BIO-C.2016.4.f15

of Ancestral Individual Candidates of generation t + 1. We still
have to prune the pedigree by removing those parents that are not

ancestral. To this end, we define the ancestral function

At+1(i) = 1(i ∈ AIt+1),

for all candidate ancestral parents i ∈ AICt+1. We compute
this function recursively by checking for all children whether or

not the chromosomes they inherited from their two parents are
ancestral (see Figure 15). Once the ancestry function At+1 has
been computed, it enables us to find the number of males and

females

m′t+1 = |{i; 1 ≤ i ≤ mt+1, At+1(i) = 1}|,
f ′t+1 = |{i; 1 ≤ i ≤ ft+1, At+1(i) = 1}|, (70)

of generation t+1 that are ancestral. The next step is to update the

number mt(i) of the father and ft(i) of the mother for all ancestral

individuals of generation t, by introducing two permutations τm
and τf of {1, . . . ,mt+1} and {1, . . . , ft+1} that move the ancestral

males and females first within each group. In order achieve this,

the permutations should satisfy

τm(i) = |{i′; 1 ≤ i′ ≤ i, At+1(i′) = 1}|,
if At+1(i) = 1,

τm(i) ∈ {m′t+1 + 1, . . . ,mt+1},
if At+1(i) = 0,

τf (i) = |{i′; 1 ≤ i′ ≤ i, At+1(Mt + i′) = 1}|,
if At+1(Mt + i) = 1,

τf (i) ∈ {m′t+1 + 1, . . . ,mt+1},
if At+1(Mt + i) = 0.

(71)

Finally, we update all relevant variables as

mt(i) ← τm(mt(i)), i ∈ AIt,

ft(i) ← τf (ft(i)), i ∈ AIt,
mt+1 ← m′t+1,

ft+1 ← f ′t+1,

(72)

and define AIt+1 as in (56). A summary of the pruning algorithm

can be found in Figure 15.

2.1.2 Population with Geographic Substructure
In order to extend the algorithm of the previous subsection to a

population with geographic substructure, we assume it divides into
a number of islands or demes. A similar model was proposed in
[99], but here we allow the number of demes and the number of

males and females within each deme to vary with time.

It is assumed that generations are non-overlapping, with Dt the

number of demes of generation t. Recall that the number of males
and females Mtd and Ftd of all demes d satisfy (2). We will use

the backward migration probabilities

{Bmtde; 1 ≤ d ≤ Dt, 1 ≤ e ≤ Dt+1},
{Bftde; 1 ≤ d ≤ Dt, 1 ≤ e ≤ Dt+1},

(73)

that an individual of deme d in generation t has its male or female

parent from deme e in generation t+ 1 (see Figure 6). The overall
backward migration rate

Btde =
1

2
(Bmtde +Bftde) (74)

from deme e to deme d, is the probability that a randomly chosen

parent of a child in d comes from e.

With geographic substructure, we must not only record the two
parents (mt(i), ft(i)), but also the deme dt(i) in which a non-
founder (t, i) lives. We will build the pedigree backwards in time

t = 0, 1, . . . , tmax − 1, as in Subsection 2.1.1. Starting with t = 0,
we first define the pedigree members AI0 of generation 0 as in (67).
Then we assign deme number

d0(i) = d (75)

for i =
∑d−1
e=1(nme + nmme) + 1, . . . ,

∑d
e=1(nme + nmme) and

i = M0 +
∑d−1
e=1(nfe + nffe) + 1, . . . ,M0 +

∑d
e=1(nfe + nffe).

Here. some of the numbers nmd, nmmd, nfd and nffd are put to
zero, depending on type of DNA, as explain above and below (55).

Next we need to assign parents from AIt+1 to all individuals in
AIt, recursively for t = 0, . . . , tmax − 1. To this end, we will divide

each recursive step into two parts. In the first part, assuming that
deme membership dt(i) has already been defined for all individuals

of AIt, we also assign them paternal and maternal demes, with

probabilities

Btd,eg = Prob(dt+1(mt(i)) = e,
dt+1(Mt + ft(i)) = g|dt(i) = d).

(76)

The probabilities in (76) define a mating rule [172], which has to

be consistent with the backward migration probabilities in (73).
By this we mean that∑

g Btd,eg = Bmtde,∑
eBtd,eg = Bftdg ,

(77)

when summing over g = 1, . . . , Dt+1 for the possible demes of
the female spouse or likewise for the possible demes e of the male

spouse. Because of (77), we only need to specify the mating proba-
bilities Btd,eg as input parameters, since the paternal and maternal
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backward probabilities are functions of them. Two possible mating

schemes are

Btd,eg =

{
BmtdeB

f
tdg ,

Btde1({e = g}),
(78)

where in the first parents meet independently of their geographic
origin, and in the second they come from the same deme. This

second mating rule can only be achieved when the backward proba-
bilities for fathers and mothers are the same (Bmtde = Bftde = Btde),
see Figure 6.

For the second part of the recursive step, we generalize the parental
assignment algorithm of Subsection 2.1.1 by keeping track of how

many parents have been selected so far within each deme, and how
many children they have. In more detail, suppose we are to assign
parents to i ∈ AIt, and that

j =

Dt+1∑
g=1

jg

parents have already been assigned to other members of AIt, of
which jg mothers live in deme g. Let mt =

∑
emt+1,e and

ft =
∑
e ft+1,e be the total number of fathers and mothers that

have these j children, of which mt+1,e and ft+1,e belong to deme

e. As before, Ct+1,f and Ct+1,mf refer to the number of children

that have been assigned so far to mother f and couple (m, f)
respectively. This implies in particular that

j =

ft∑
f=1

Ct+1,f ,

jg =
∑

f;1≤f≤ft
dt+1(Mt+f)=g

Ct+1,f .

We also introduce

Cet+1,f =
∑

m;1≤m≤mt
dt+1(m)=e

Ct+1,mf

as the number of children mother f had so far with a spouse from
deme e. With these definitions, we can generalize the parental
selection scheme (68) to a population with geographic substructure,

as

Prob(mt(i) = m, ft(i) = f |
dt+1(mt(i)) = e, dt+1(ft(i)) = g)

=



α+Ct+1,f

Ft+1,gα+jg
· β+Ct+1,mf

Mt+1,eβ+C
e
t+1,f

, (I)

α+Ct+1,f

Ft+1,gα+jg
· β(Mt+1,e−mt+1,e)

Mt+1,eβ+C
e
t+1,f

, (II)

α(Ft+1,g−ft+1,g)

Ft+1,gα+jg
· 1
Mt+1,e

, (III)

α(Ft+1,g−ft+1,g)

Ft+1,gα+jg
· Mt+1,e−mt+1,e

Mt+1,e
, (IV)

0, (V)

where the five numbered rows on the right hand side represent
different choices

(I) : m ≤ mt+1, f ≤ ft+1, dt+1(m) = e, dt+1(f) = g,

(II) : m = mt+1 + 1, f ≤ ft+1, dt+1(f) = g,
(III) : m ≤ mt+1, f = ft+1 + 1, dt+1(m) = e,
(IV) : m = mt+1 + 1, f = ft+1 + 1,

(V) : otherwise,

INITIATE
j = 0, jg = 0 for g = 1, . . . , Dt+1

mt+1 = ft+1 = 0, mt+1,e = ft+1,e = 0 for e = 1, . . . , Dt+1

Ct+1,f = Ce
t+1,f = Ct+1,mf = 0 for all m, f, e

END
FOR i ∈ AIt DO

Assign demes e and g to the father and mother of i,
according to (76)

Select (mt(i), ft(i)) with probabilities as in the above
displayed formula

j ← j + 1, jg ← jg + 1
IF cases II or IV
mt+1 ← mt+1 + 1, mt+1,e ← mt+1,e + 1
dt+1(mt+1) = e

END
IF cases III or IV
ft+1 ← ft+1 + 1, ft+1,g ← ft+1,g + 1
dt+1(Mt+1 + ft+1) = g

END
Ct+1,ft(i)

← Ct+1,ft(i)
+ 1

Ce
t+1,ft(i)

← Ce
t+1,ft(i)

+ 1

Ct+1,mt(i)ft(i)
← Ct+1,mt(i)ft(i)

+ 1
END

Figure 16: Algorithm for adding parents to a pedigree. The population has
geographic substructure and non-overlapping generations. It corresponds to
line (*) of Figure 13, where all individuals in generation t are assigned parents.
doi:10.5048/BIO-C.2016.4.f16

of father m, mother f and their deme numbers. The algorithm to

find the parents of all individuals in the pedigree in generation t is
summarized in Figure 16. After this a final pruning of the pedigree
takes place, where all non-ancestral parents of generation t+ 1 are
removed. This is done in the same way as in Figure 15.

2.1.3 Population with Age Structure
For a geographically homogeneous population with age structure,
we think more generally of t as a time index rather than a generation

number, with Dt the number of age classes at time Tt. The age
classes at this time point range from newborns d = 1 up to the
oldest age class d = Dt. If the age difference between two adjacent

classes is constant, and equal to the difference Tt+1 − Tt between
two consecutive time points, it follows that an individual who
survives to the next time point always moves up one age class.

If we look backwards in time, an adult at time Tt with t < tmax

belonged to the population at time Tt+1 as well, but in the nearest

lower age class.

Let dt(i) be the age class to which a non-founder (t, i) belongs. Age
structured populations differ from geographically structured ones

in that newborns (dt(i) = 1) and adults (dt(i) > 1) are treated

differently. Newborns are handled in the same way as in Section
2.1.2 by specifying a mating rule

Bt1,eg = Prob(dt+1(mt(i)) = e, dt+1(ft(i)) = g|dt(i) = 1) (79)

for the two age classes e and g of the father and mother. In analogy
with (77), we let

Bmt1e =
∑
g Bt1,eg ,

Bft1g =
∑
eBt1,eg

(80)

refer to the age distribution of the father and mother by summing

over all possible age classes g, e = 1, . . . , Dt+1 of the spouse, that
is, the mother and father respectively. Assume for instance an

age span Tt+1 − Tt between two consecutive time points of ten

years, and that age classes correspond to 0, 10, 20, . . . , 100 years.
If the age range fertility is 20-70 years for fathers (Bmt1e > 0

for e = 2, 3, 4, 5, 6, 7) and 20-40 years for females (Bft1e > 0 for

e = 2, 3, 4), and couples mate independently of age, we get a
mating rule as in the upper part of (78). Since the fertility ranges
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INITIALIZE
mt+1 = ft+1 = 0,mt+1,e = ft+1,e = 0 for e = 1, . . . , Dt+1

END
FOR i ∈ AIt DO
d = dt(i)
IF d > 1 DO

IF i ≤Mt DO
mt+1 ← mt+1 + 1
mt+1,d−1 ← mt+1,d−1 + 1
dt+1(mt+1) = d− 1
st(i) = mt+1

ELSEIF i > Mt DO
ft+1 ← ft+1 + 1
ft+1,d−1 ← ft+1,d−1 + 1
dt+1(Mt+1 + ft+1) = d− 1
st(i) = Mt+1 + ft+1

END
END

END

Figure 17: Part of the pedigree building algorithm for a homogeneous
population with overlapping generations. It corresponds to the second step
of line (*) in Figure 13, where adults of time step t assign themselves as parents
at time step t+ 1. doi:10.5048/BIO-C.2016.4.f17

of males and females are different, it is not possible to require that

parents have the same age, as in the lower part of (78). One may
define a mating rule though where couples are as close in age as
possible, given the different male and female fertility ranges.

Adults (t, i), on the other hand, have only one parent (itself) the
previous time point if t < tmax. Let st(i) ∈ AIt+1 be the self
number (59) that (t, i) had the previous time point. The backward

migration probabilities are easily assigned to st(i), since adults
move down one age class in reversed time, i.e.

Btde = Prob(dt+1(st(i)) = e|dt(i) = d > 1)
= 1({e = d− 1}). (81)

We will build AIt+1 from AIt in three steps. In the first step,

all adults in AIt will have themselves assigned as single parents,

according to (81). To this end, we let mt+1 =
∑Dt+1
e=1 mt+1,e refer

to the total number of males in AIt+1 that have so far either been

assigned at least one child, or appear in AIt as an adult. Among
these males, mt+1,e belong to age class e. The corresponding
variables for females are ft+1 and ft+1,e. See Figure 17 for a

summary of the first step. After its completion we have

mt+1,e = |{i ∈ AIt; i ≤Mt, dt(i) = e+ 1}|,
ft+1,e = |{i ∈ AIt; i > Mt, dt(i) = e+ 1}|,

for e = 1, . . . , Dt+1.

In the second step, we assign parents to all newborns of AIt. To

this end, we use the algorithm of Section 2.1.2 in order to choose
mother and father of all newborns in AIt. This requires not only

that we keep track of mt+1, mt+1,e, ft+1 and ft+1,e, but also of
j, the number of other newborns that have been assigned parents
so far, of which jg had a mother in age class g. We also need to
know Ct+1,f , the number of newborn children of AIt that have

so far been assigned to female parent f ∈ AIt+1, and how many
(Cet+1,f ) of these children that had a male parent from age class e.

Finally, Ct+1,mf is the number of children that have so far been
assigned to couple (m, f). Assignment of parents mt(i) and ft(i)
to all newborns i ∈ AIt starts with initial conditions

j = 0,

jg = 0,
Ct+1,f = Cet+1,f = Ct+1,mf = 0, for all m, f, e.

Together with the values of mt+1, mt+1,e, ft+1 and ft+1,e from

the first step, they are used as input parameters for the algorithm
of Figure 16, with the same updating rules for all variables.

In the third step, we prune the pedigree by removing those par-

ents from generation t+ 1 that are not ancestral, as described in
Figure15.

2.1.4 Combined Geographic and Age Structure
The theory of the last two sections can be combined, assuming
that the population at each time point Tt has geographic and age

substructure. Then each subpopulation d = 1, . . . , Dt represents a

combined deme and age class. It is convenient to decompose all
subpopulations

{1, . . . , Dt} = NSt ∪ASt

at time Tt into newborn and adult subpopulations. Suppose (t, i) ∈
AI lives at a time point Tt with t < tmax. For a newborn (dt(i) ∈
NSt), we need to assign his or her male and female parents mt(i)

and ft(i) (∈ AIt+1), with probabilities specified by a mating rule

Btd,eg = Prob(dt+1(mt(i)) = e, dt+1(ft(i)) = g|dt(i) = d). (82)

For an adult (dt(i) ∈ ASt), we need to specify from which subpop-

ulation he or she migrated, with probabilities

Btde = Prob(dt+1(st(i)) = e|dt(i) = d), (83)

where st(i) ∈ AIt+1 is his or her self index from the previous time
point.

The recursive step of the pedigree algorithm, where AIt+1 is built
from AIt, is basically the same as in Section 2.1.3. In a first

step we assign from which subpopulation all adults have migrated,
according to (83). The major difference compared to Section 2.1.3
is that the subpopulation of time Tt+1 can be chosen in more than

one way. Then, in a second step, all newborns choose father and
mother according to (82), and finally the non-ancestral parents at
time Tt+1 are removed.

2.2 Generating Recombination Events
The random collection of recombination events RECtc in (65) for

autosomal DNA, or for X chromosome DNA inherited from moth-
ers, will be generated independently for each ancestral chromosome
(t, c) of a non-founder time point. We write it as a disjoint union

RECtc =
(

RECord
tc ∪ RECgc,l

tc ∪ RECgc,r
tc

)
∩ {1, . . . , Q− 1}

of ordinary (or reciprocal) recombinations events, each one of
which represents an odd number of crossovers, and those single

crossover events generated by gene conversion, one to the left and
one to the right of the tract. Since one of the two crossovers

of a gene conversion may fall outside the studied chromosomal

region, the intersection with {1, . . . , Q− 1} assures that RECtc is
delimited to this region. Whenever gene conversion is included, it

is assumed that all neighboring haplotype blocks hbq and hbq+1

are neighboring chromosomal regions, with no gap in between, so

that each recombination events represents one single crossover.

In the following two subsections we describe ordinary recombina-

tions and gene conversions separately.

2.2.1 Ordinary Recombinations
In order to generate ordinary recombination events, we assume no

chiasma interference, or Haldane’s map function, see for instance
[104,105]. It implies that crossovers occur independently within

RECtc at all haplotype block boundaries hbbq, q = 1, . . . , Q− 1,

with probabilities

Prob(hbbq ∈ RECord
tc ) =

{
rmq , if c is odd,

rfq , if c is even,
(84)

as in (19), since an odd (even) c corresponds to a chromosome
inherited from a father (mother).
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If Q is large and all recombination probabilities are small, it is

computationally more efficient to use an approximation of (84)
where first the total number |RECord

tc | of ordinary recombination

events are generated, and then these are randomly distributed to

haplotype block boundaries. Let

rm =
∑Q−1
q=1 rmq , if c is odd,

rf =
∑Q−1
q=1 rfq , if c is even,

(85)

be the expected number of ordinary recombination events along
chromosome c when a sperm or ovum cell is formed. We draw the
number of recombination events from a Poisson distribution with

mean (19), i.e.

Prob(|RECord
tc | = j) =

{
e−rmrjm/j!, if c is odd,

e−rf rjf/j!, if c is even,

for j = 0, 1, 2, . . .. These |RECord
tc | events are then allocated inde-

pendently between haplotype block boundaries hbbq with probabili-
ties rmq/rm and rfq/rf for male and female germ cells respectively.

Any crossover is discarded if it appears at a haplotype boundary
where another crossover has already been allocated.

2.2.2 Gene Conversion
By gene conversion we mean a process during meiosis where two

homologous strands intersect, and the resulting Holliday junction is
resolved by two nearby crossing over events. Only a short tract of

DNA is transferred between the two strands, whereas the flanking

regions are not. We use the mathematical model in [173,174] to
generate gene conversion, or double crossover, events. It is mainly

of interest when the simulated region comprises a small segment

of a chromosome.

Each randomly generated gene conversion can be represented in
terms of its left and right haplotype block boundaries {hbbQ1

, hbbQ2
},

and tract length TL = Q2−Q1 > 0, counted in units of haplotype

blocks. If both end points are visible within the chromosomal
segment we have 1 ≤ Q1 < Q2 ≤ Q− 1, if only the left end point
is visible we have 1 ≤ Q1 ≤ Q − 1 < Q2, and finally, if only the

right end point is visible we have Q1 < 1 ≤ Q2 ≤ Q − 1. Let
TLmax denote the maximal possible value of TL. In a first step,
we generate left end points of gene conversion tracts independently
for all haplotype boundaries hbbq , q = 1−TLmax, . . . , Q− 1, with

probabilities

Prob(hbbq ∈ RECgc,l
tc ) =

{
γmq , if c is odd,
γfq , if c is even,

(86)

as in (21). Typically, we will not distinguish these probabilities

for meioses within males and females, and write γmq = γfq = γq .
When all left end points have been defined, we write the right end

points as

RECgc,r
tc = ∪

q;hbbq∈REC
gc,l
tc

hbbq+TLq , (87)

where 1 ≤ TLq ≤ TLmax are independent random variables having
a pre-specified tract length distribution TLD. This distribution

may differ or be the same for males and females meioses.

There is a small probability that a ordinary single crossover event
overlaps with a gene conversion tract, or that two gene conversion

tracts overlap. In the first case we disregard the single crossover,
and in the second case we remove the rightmost tract.

2.3 Recursive Computation of Haplotype Blocks
Instead of pre-specifying haplotype blocks, they can be computed as
part of the algorithm by allowing recombination events to happen

anywhere among the boundaries {1, . . . , L− 1} between adjacent
loci. It is then convenient to define haplotype boundaries as a subset

these L−1 locus boundaries, rather than {1, . . . , Q−1}. Similarly,

for any ancestral chromosome (t, c) ∈ AC of a non-founder time
point, we define the recombination events

RECtc =
(

RECord ∪ RECgc,l ∪ RECgc,r
)
∩ {1, . . . , L− 1}

as subset of the locus boundaries rather than the Q− 1 haplotype

boundaries. We can still use the model of Section 2.2, with ordinary
recombination events and gene conversion to the left or right of

the tract, provided we replace haplotype boundaries by locus

boundaries. These are denoted lbl between loci l and l + 1, for
l = 1, . . . , L − 1. For ordinary recombination events, we modify

(84) to

Prob(lbl ∈ RECord
tc ) =

{
rml, if c is odd,

rfl, if c is even,
(88)

where (rml)
L−1
l=1 and (rfl)

L−1
l=1 contain recombination probabilities

at all locus boundaries for meioses within males and females. For

gene conversion, we similarly we replace (86) and (87) by

Prob(lbl ∈ RECgc,l
tc ) =

{
γml, if c is odd,
γfl, if c is even,

(89)

and

RECgc,r
tc = ∪

l;lbl∈REC
gc,l
tc

lbl+TLl
, (90)

where (γml)
L−1
l=1 and (γfl)

L−1
l=1 contain recombination probabilities

for the left part of the tract at all locus boundaries within males

and females, and TLl is the length (in units of base pairs) for a
tract starting at locus l.

The set of haplotype block boundaries consists of those locus
boundaries where recombinations occurred, either in ancestral or
trapped material, see for instance Section 5.5 in [175]. The trapped

material of an ancestral chromosome (t, c) ∈ AC is the set of non-
ancestral loci that are surrounded by ancestral regions along the
chromosome, to the right and left. It is important to account for

crossovers also in trapped material, as it will affect the ancestral
recombination graph. Since the trapped material ’fills up’ gaps
between ancestral regions, it follows that the set of ancestral or
trapped loci

ATLtc = {l ∈ L; l is ancestral or trapped in (t, c)}
= {l1tc, l1tc + 1, . . . , l2tc}

of an ancestral chromosome (t, c) ∈ AC is a discrete interval, with
both end point loci l1tc and l2tc containing ancestral material. The

haplotype boundaries are then defined as

hbb = ∪(t,c)∈AC [RECtc ∩ lb(ATLtc)] , (91)

where lb(ATLtc) consists of all locus boundaries in ATLtc.

We use the notation cl(L′) for the closure of any subset L′ ⊂ L
of loci. Figure 18 describes how the haplotype block boundaries

(91) are computed recursively backwards in time, together with

the genealogy.

3. GENERATING MUTATIONS AND GENE
DROPPING
Once the genealogy is defined, the alleles of the reference chro-

mosome and those that get mutated in other chromosomes, are
spread forwards in time to all ancestral DNA. This will be done

differently depending on whether mutation probabilities depend
on the actual alleles that get mutated or not.
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INITIALIZE
Q = 1
hbb = ∅
Define AI0 and AC0

FOR k = 1, . . . , n DO
ATL0,ck

= L
END

END
FOR t = 0, . . . , tmax − 1

Generate parents mt(i), ft(i) or selfing numbers st(i) for all i ∈ AIt
Define AIt+1 as all st(i) and all ancestral parents in previous step
hbbold = hbb
FOR all c ∈ ACt DO

Compute pt1(c) according to (60), (61), (62), (63) or (64)
Generate RECtc

hbbtc = RECtc ∩ lb(ATLtc)
newhbbtc = [hbb ∪ hbbtc] \ hbb
Q← Q+ |newhbbtc|
hbb← hbb ∪ newhbbtc

END
IF t = 0

FOR k = 1, . . . , n DO
AHB0ck

= {1, . . . , Q}
FOR q = 1 TO Q

ARG0kq = ck
END

END
ELSE

newhbbt = hbb \ hbbold

Use newhbbt to update all ARGt′kq and AHBt′c with t′ ≤ t
END
ACt+1 = ∅
FOR all c ∈ ACt DO

Compute {ptq(c)}Qq=2 as in (66)

FOR all c′ ∈ {ptq(c); q ∈ AHBtc} DO
ACt+1 ← ACt+1 ∪ {c′}
ATLt+1,c′ ← cl

[
ATLt+1,c′ ∪ (ATLtc ∩ {hbq ; q ∈ AHBtc, ptq(c) = c′})

]
END

END
FOR all c ∈ ACt+1 DO

AHBt+1,c = ∅
END
FOR k = 1 TO n

FOR q = 1 TO Q
c = ptq(ARGtkq)
ARGt+1,kq = c
AHBt+1,c ← AHBt+1,c ∪ {q}

END
END

END

Figure 18: Algorithm for generating the ancestral recombination graph (ARG) and ancestral haplotype blocks (AHB), when haplotype blocks are not
specified in advance. doi:10.5048/BIO-C.2016.4.f18
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3.1 Mutation probabilities independent of nucleotides
We will mainly consider the case when the founder diversity prob-
abilities νl and germline mutation probabilities µl can be writ-

ten as in (26) and (28), regardless of which alleles that mutate.

This is much simpler, since it is possible to first generate all
founder/germline mutations (without knowing what kind of nu-

cleotides get mutated), and then spread the alleles of the reference

chromosome, as well as mutations, through gene dropping.

3.1.1 Generating ancestral mutations
Define the subset

AMEtc = ∪q∈AHBtcAMEtcq ⊂ L (92)

of loci at which mutations occur for the ancestral part of chromo-

some (t, c), cf. (32). We only include ancestral haplotype blocks in
(92), and disregard all silent mutations of (t, c).

When (t, c) belongs to a non-founder time point (t < tmax), we will
use the mutation probabilities in (28). Let µ =

∑L
l=1 µl be the

expected total number of mutations along (t, c). We assume that

the total number nmuttc of mutations along (t, c) has a Poisson
distribution with expected value µ, i.e.

Prob(nmuttc = j) = e−µ
µj

j!
, j = 0, 1, 2, . . . . (93)

Let
Pl =

µl

µ
(94)

be the probability that a specific mutation occurs at locus l for
all l ∈ L. Given that nmuttc = j, we generate mutational loci

independently with probabilities (94), until j different loci have
been obtained. (There is a very small probability some locus may

be obtained more than once. Then only its first occurrence is

retained.) Finally we only keep the ancestral mutational loci l.
That is, we only keep l ∈ hbq if q ∈ AHBtc.

For the founder generation, we need to generate ancestral muta-
tional events for its non-reference copies of the chromosome region

of interest. Depending on type of DNA, these are

(t, c) ∈
{(tmax, 2), (tmax, 3), (tmax, 4)}, aut-DNA,

{(tmax, 3), (tmax, 4)}, X-DNA,
∅, Y - or mtDNA.

(95)

For each such chromosome, AMEtc is obtained similarly as for

non-founder chromosomes, replacing the mutational probabilities
µl in (28) by the founder diversity probabilities νl in (26). That
is, we first generate the total number of mutations in (t, c) from

Prob(nmuttc = j) = e−ν
νj

j!
, j = 0, 1, 2, . . . , (96)

where ν =
∑L
l=1 νl, then select mutated loci l with probabilities

Pl =
νl

ν
, (97)

and keep those that are ancestral. Figure 19 summarizes how
ancestral mutations are generated.

3.1.2 Building mutational trees and gene dropping
Once all ancestral mutational events are defined, we generate

the alleles aref
l ∈ A(l) of the reference haplotype href in (22)

independently at all loci l, with probabilities πa as in (23), (24) or
(25). As mentioned in Section 1.5, this reference haplotype belongs

to chromosome (tmax, cref), where

cref =


1, for aut- or Y-DNA,
2, for X-DNA,

4, for mtDNA.

(98)

FOR all (t, c) ∈ AC DO
AMEtc = ∅
IF t < tmax

Generate nmuttc from distribution (93)
FOR i = 1 TO nmuttc DO

Generate mutated locus l from distribution (94)
Define q by l ∈ hbq

IF q ∈ AHBtc

AMEtc ← AMEtc ∪ {l}
END

END
ELSEIF t = tmax AND (t, c) belongs to the set in (95)

Generate nmuttc from distribution (96)
FOR i = 1 TO nmuttc DO

Generate mutated locus l from distribution (97)
Define q by l ∈ hbq

IF q ∈ AHBtc

AMEtc ← AMEtc ∪ {l}
END

END
END

END

Figure 19: Algorithm for generating ancestral mutation events (AME).
doi:10.5048/BIO-C.2016.4.f19

The alleles of href are then spread for each l by gene dropping
along all ancestral lineages, forwards in time, down to present time

t = 0. This continues until the alleles akl of locus l are defined for

all sampled haplotypes hk in (35), i.e. for k = 1, . . . , n. Whenever
an ancestral mutational event along a lineage occurs, a change of

alleles takes places.

The set of polymorphic loci Lpol are those loci with more than one

allele in the sample, cf. (40). We may compute this set from the
ancestral mutational events (92) as

Lpol = {l ∈ L; nrallelesl > 1}
= ∪(t,c)∈ACAMEtc.

(99)

It is trivial to do the gene dropping at non-polymorphic loci

Lnonpol = L \ Lpol, since the sampled haplotypes will have al-

leles

akl = aref
l for l ∈ Lnonpol and k = 1, . . . , n,

identical to the reference haplotype at all such loci. It is more
complicated to define the gene dropping process at polymorphic
loci l ∈ Lpol. For each such locus, we first build a mutational tree

MTl ⊂ AC,

whose root is the reference chromosome (tmax, cref), and whose

leaves are the n sampled chromosomes (0, c1), . . . ,
(0, cn) of time point 0. All internal nodes belong to the set

AMCl = {(t, c) ∈ AC; l ∈ AMEtc} (100)

of ancestral mutated chromosomes at l, i.e. those ancestral chromo-
somes that experienced a mutation at l. For each node or vertex

(t, c) of MTl we introduce

pal(t, c) = parent of (t, c),

chl(t, c) = set of children of (t, c),

kl(t, c) = index k of one (arbitrary)
descendant (0, ck) of (t, c),

with pal(tmax, cref) = ∅ for the reference chromosome and chl(0, ck) =

∅ for all leaves. The mutational tree is similar to an allelic geneal-
ogy [176], in that its internal nodes correspond to mutations rather

than coalescence events. The allelic genealogy is in fact a subset of
the mutational tree, where only those internal nodes that branch
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INITIATE

(tmax, c
ref) ∈ MTl,where cref is defined in (98)

pal(tmax, c
ref) = chl(tmax, c

ref) = ∅
kl(tmax, c

ref) = 1
FOR k = 1 TO n

(0, ck) ∈ MTl

pal(0, ck) = chl(0, ck) = ∅
kl(0, ck) = k

END
Define q by l ∈ hbq

END

WHILE pal(t, c) = ∅ for some (t, c) ∈ MTl \ {(tmax, c
ref)} DO

k = kl(t, c)
t′ = min{t′′; t < t′′ ≤ tmax,ARGt′′,kq ∈ AMCl},

where min ∅ = tmax + 1
IF t′ > tmax THEN

pal(t, c) = (tmax, c
ref)

chl(tmax, c
ref)← chl(tmax, c

ref) ∪ {(t, c)}
ELSEIF t′ ≤ tmax THEN

pal(t, c) = (t′, c′), where c′ = ARGt′,kq

IF (t′, c′) /∈ MTl

MTl ← MTl ∪ {(t′, c′)}
chl(t

′, c′) = (t, c)
kl(t
′, c′) = k

ELSE
chl(t

′, c′)← chl(t
′, c′) ∪ {(t, c)}

END
END

END

Figure 20: Algorithm for building a mutational tree at a polymorphic locus.
The tree is denoted MTl at locus l. doi:10.5048/BIO-C.2016.4.f20

(i.e. have at least two children) are retained. The algorithm for
building the mutational tree is summarized in Figure 20.

When MTl has been defined, it remains to gene drop at l. That is,
we need to spread the reference allele aref

kl from the root of the tree
to all descendants, and generate new alleles randomly whenever a

mutational node is found, with probabilities Pab obtained either
from (29), (30) or (31). To this end, we define an allele function

al : MTl → A(l)

for all nodes of MTl, with al(t, c) = ∅ designating a node whose
allele has not yet been assigned. The gene dropping algorithm is
summarized in Figure 21. It is applicable both for single nucleotide,

codon and microsatellite markers.

The mutational trees, and the subsequent gene dropping are illus-
trated in Figure 22 for two single nucleotide loci. The leftmost

tree has only one internal node other than the root. This is always
the case for mutational trees at loci without double mutations.

3.1.3 Example: Single nucleotide markers

For single nucleotide loci, we want the transition and transver-

sion probabilities of matrix P in (29) to conform with the transi-
tion/transversion ratio R (cf. Section 1.5), as well as the probabili-
ties πA, πG, πC and πT of all four nucleotides4. It can be shown
that

P =


0 1− u ux u(1− x)

1− u 0 ux u(1− x)
vy v(1− y) 0 1− v
vy v(1− y) 1− v 0

 (101)

4Technically, (πA, πG, πC , πT ) should equal the stationary distri-
bution of a Markov chain with transition matrix P .

INITIATE

al(tmax, c
ref) = arefl

FOR all (t, c) ∈ MTl \ {(tmax, c
ref)}

al(t, c) = ∅
END

END
WHILE some internal node (t, c) has been assigned allele but

not its children DO
FOR all (t′, c′) ∈ chl(t, c) DO independently

IF (t′, c′) ∈ AMCl

GENERATE al(t
′, c′) randomly with

Prob(al(t
′, c′) = a′|al(t, c) = a) = Paa′

ELSE
al(t
′, c′) = al(t, c)

END
END

END
FOR k = 1 TO n
akl = al(0, ck)

END

Figure 21: Gene dropping of alleles at one locus. The locus number is l.
doi:10.5048/BIO-C.2016.4.f21

indeed satisfies these constraints when

u = 1/ [2(R+ 1)(πA + πG)] ,

v = 1/ [2(R+ 1)(πC + πT )] ,

x = [(2− v)πC/(πC + πT )− (1− v)] /v,

y = [(2− u)πA/(πA + πG)− (1− u)] /u,

and 0 ≤ x, y ≤ 1. However, the last two inequalities are only
satisfied when

1− u
2− u

≤
πA

πA + πG
≤

1

2− u
,

and
1− v
2− v

≤
πC

πC + πT
≤

1

2− v
.

The matrix

P =



0 R
R+1

1
2(R+1)

1
2(R+1)

R
R+1

0 1
2(R+1)

1
2(R+1)

1
2(R+1)

1
2(R+1)

0 R
R+1

1
2(R+1)

1
2(R+1)

R
R+1

0


(102)

was suggested in [178]. It is a special case of (101) when πA =
πC = πG = πT = 1/4, and it generalizes the symmetric matrix

proposed in [118] when there are twice as many transversions as

transitions (R = 1/2). See also Chapter X in [178].

3.1.4 Double mutations ignored
When all loci with double mutations are discarded, the algorithm
of Section 3.1.2 can be simplified. The mutational tree at l can
be computed more rapidly, since any of its internal nodes is either
the reference chromosome, or has the reference chromosome as a
parent. This amounts to adding two new rows to the algorithm of
Figure 20, after its last IF statement:

.

.

.
IF (t′, c′) /∈ MTl

MTl ← MTl ∪ {(t′, c′)}
chl(t

′, c′) = (t, c)
kl(t
′, c′) = k

pal(t
′, c′) = (tmax, c

ref)

chl(tmax, c
ref)← chl(tmax, c

ref) ∪ {(t′, c′)}
ELSE

.

.

.
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Figure 22: Illustration of mutational trees for nuclear autosomal DNA. Trees MTl are shown at the two single nucleotide loci l ∈ Lsn for which mutations
occurred in Figure 7. At the leftmost locus within haplotype block hb1, the gene dropping (see Figure 8) starts from nucleotide C of reference chromosome (2, 1)
of the founder generation. The spread of this nucleotide is interrupted by one ancestral mutation C → T that occurs at chromosome (1, 3) at time point 1. At
the second locus within hb3, gene dropping starts from nucleotide A of the reference chromosome, and the spread of this allele is interrupted by two ancestral
mutations. The first mutation (A → G) occurs in chromosome (2, 4) in order to generate diversity in the founder generation. The second mutation (G → C)
occurs at time point 1, for an offspring of the mutated founder chromosome. Notice that the first locus is biallelic (C and T ), whereas the second locus has three
alleles A, G and C. The set of mutated sampled chromosomes SMCl in (36) is {(0, 1)} for locus l of the leftmost graph, and {(0, 5), (0, 6)} for locus l of the
rightmost graph. doi:10.5048/BIO-C.2016.4.f22

Once the mutational tree at l is built, there is no need to gene
drop alleles from the reference haplotype. In view of (39), it
suffices to know which sampled chromosomes (0, ck) that descend
from a mutated allele. This is equivalent to checking whether the
parent of (0, ck) in the mutational tree is the reference chromosome
(tmax, cref) or not:

FOR k = 1 to n DO

IF pal ((0, ck)) = (tmax, c
ref)

aismkl = 0
ELSE

aismkl = 1
END

END

3.2 Mutation probabilities allele dependent
We will generalize the previous model of Section 1.5, and write the

mutation probability between a pair of distinct alleles a 6= b ∈ A(l)
at locus l ∈ L as

νlaPab = Prob(a→ b in founder chr. at l),

µlaPab = Prob(a→ b in non-founder chr. at l).
(103)

The mutation model of Section 1.5 is a special case of (103). The
interpretation of Pab in (103) is still the same, the probability that

a mutation is from nucleotide a to b, given that we know it has
happened and that the allele before the mutation was a. The main
novelty of (103) is that the mutation probabilities νla = νl and

µla = µl depend on which allele a ∈ A(l) that is changed. We
have that ∑

a∈A(l) νlaπa = νl,∑
a∈A(l) µlaπa = µl,

(104)

so that νl and µl are still the overall founder and germline mutation

rates, when averaged over all possible alleles.

When the mutation probability µla depends on the allele a, we

have to know this allele before generating the mutation. This has

implications for the simulation algorithm, since mutations have to
be defined simultaneously with gene dropping. This is more time

consuming, as we have to apply gene dropping for lots of loci at
which mutations never occur.

3.2.1 Example: Singe nucleotide markers
At single nucleotide markers the set of alleles is the four nucleotides
A, G, C and T (cf. (3)). It is known for instance that the G and
C alleles have at least a tenfold higher mutation rate than the A

and T alleles for germline mutations [122].

For simplicity of notation we write µla = µa, not indicating that

mutation probabilities depend on the locus l. The general time-
reversible (GTR) model in [179] has the form

(µaPab) =


−− µAPAG µAPAC µAPAT

µGPGA −− µGPGC µGPGT
µCPCA µCPCG −− µCPCT
µTPTA µTPTG µTPTC −−


=


−− u1πG u2πC u3πT
u1πA −− u4πC u5πT
u2πA u4πG −− u6πT
u3πA u5πG u6πC −−

 ,

where a, b ∈ Asn range over all single nucleotide alleles, and

u1, . . . , u6 are free parameters that can the varied. This model auto-
matically provides the correct nucleotide frequencies πA, πG, πC , πT .

The other parameters can be varied as to fit the observed mutation

probabilities µa and transition/transversion ratio R.

3.2.2 Example: Microsatellite markers
It is well known that the germline mutation probability µa = µla
for microsatellite markers depends on the number of repeats a. A

data set with AC repeats was analysed in [139]. The authors found
a best fitting model of the form

µaPab =


γu exp [αua− λ(b− a)] , b > a,

γd exp [αda− λ(a− b)] , b < a,
1−

∑
c;c 6=a µaPac, b = a,

where λ controls how much the repeat length may change, γu
(γd) determine the overall mutation probability for upward (down-
ward) jumps, and αu (αd) controls how the upward (downward)
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probabilities depend on length. Their parameter estimates where

λ = 1.06,
γu = 3.1 · 10−6,

γd = 4.0 · 10−7,

αu = 0.200,
αd = 0.302.

(105)

Since αd > αu, the stationary distribution {πa}∞a=1 for the number
of tandem repeats exists. The values in (105) give a distribution
that fits the empirically observed ones, with a mean around 20
repeats and standard deviation of order 5.

3.3 Ascertainment correction
When validating simulated data, it is important to mimic the

sampling procedure of real data in order to avoid ascertainment

bias. It is often the case that the set of markers has been found
from a discovery panel with few individuals. As a consequence,

highly polymorphic markers with at least two common alleles

tend to be overrepresented. This implies that the observed allele
frequency spectrum in the sample gets biased in comparison to

that of the whole population.

A number of possible ascertainment schemes are possible, see
for instance [180,181] and references therein. In our context we
allow for ascertainment by retaining only a subset of polymorphic

loci Lpol, whether they were generated as in Section 3.1 or 3.2.
Let Ascl be the event that a polymorphic locus l is retained
after ascertainment. As a first approximation, we may assume

that ascertainment events are independent between loci, with
probabilities

Prl = Prob(Ascl). (106)

The sparser Lpol is, the more accurate is this approximation.

We mentioned above that most ascertainment schemes tend to
select for loci that are polymorphic, i.e. have at least two common
alleles. In order to illustrate this with a simple example, we let πla
be the frequency of allele a at locus l in the whole population. It
equals π̂la = nla/n in (42) only if the whole population is sampled,
i.e. if n = 2N0. Suppose, for instance, that a reference sample of

nref chromosomes from the population is used, where typically nref

is much smaller than n. A simple ascertainment scheme retains l
only if it is polymorphic in the reference panel. For a biallelic locus,

both alleles must be present in the reference sample. Assuming that
the nref chromosomes are drawn randomly without replacement

from the whole population, we get an ascertainment probability

Prl =

(2N0MAFl

nref

)
+
(2N0(1−MAFl)

nref

)(2N0

nref

) (107)

in terms of the minor allele frequency

MAFl = min{πal; a ∈ A(l), πal > 0}

of locus l. The minor allele frequency in (43) can be viewed as
an estimate of MAFl for the sampled set of n chromosomes. A
more refined ascertainment scheme would take into account that
the reference sample is drawn from several different geographic

regions.

Typically Prl is a function of the allele frequencies of the marker at

l, as in (107). If these are not known, we replace these frequencies
by appropriate estimates and plug them into (106), in order to

obtain an an estimate P̂rl of Prl. For instance, if the minor allele

frequency MAFl in (107) is not known, we replace it by an estimate.
Figure 23 summarizes the ascertainment correction algorithm.

Define the set Lpol of polymorphic loci from the gene dropping
algorithm

FOR l ∈ Lpol DO

Compute estimate P̂rl of ascertainment probability in (106)

With probability 1− P̂rl DO Lpol ← Lpol \ {l}
END

END

Figure 23: Removal of all non-ascertained polymorphic loci from the sam-
pled haplotypes. doi:10.5048/BIO-C.2016.4.f23

4. NATURAL SELECTION
The algorithm of Sections 1.4-1.6 only includes four forces of

microevolution; genetic drift, recombinations, migration and muta-
tions. In this section we will briefly discuss the fifth one, natural
selection. It occurs when the genetic composition of individuals

influence their reproductive fitness. For the public, directional
selection has often been described as the major force of evolution

[182,183]. This is the most well known type of natural selection

where one allele is believed to have a selective advantage over an-
other at the same locs. But an increasing number of authors have
emphasized its limited power to generate new genetic patterns

[184-186], although it seems important for some specific genes
[187]. Selection does first of all not act on DNA but on phenotypes,
our observable characteristics like body weight and functioning

organs. DNA only affects fitness indirectly, and it needs mutations
to operate on, of which most are neutral or slightly deleterious.
It seems that the major task of directional selection is to select

against those individuals that have highly deleterious mutations.
And since selection operates on phenotypes, its power is limited to
favor beneficial alleles and/or to remove slightly deleterious alleles
at many loci simultaneously [188-190].

But selection may still have an important role to play in order to
generate diversity. Some genomic regions, such as the HLA-DRB1

gene of the major histocompability complex of chromosome 6,
which is important for the human immune system, or a region
from the ABO blood group system on chromosome 9, are known

to be very polymorphic [191,192]. This is partially due to a higher
mutation rate in these regions, but it is likely that selection is
required as well in order to explain such a high diversity. Another

example is the mouflon population from an isolated island of
the Sub-Antarctive archipelago. It was founded in 1957 by two
individuals, and its current size oscillates around 500 [193]. The

population has been monitored since the 1970s, and analysis of
genetic data revealed a diversity much higher than neutral models
of microevolution would predict. Simulations indicate that natural

selection could be a major explanation of this unexpectedly high
genomic diversity.

A number of different types of natural selection are described
in Chapter 6 of [47]. Of these balancing selection is the one

most suitable to explain the occurrence of genetic diversity. It
operates in such a way that heterozygous individuals, with different

homologous alleles at one or several parts of the genome, have a

selective advantage in terms of a higher survival probability [194-
196]. Balancing selection was used in [193] for the microsatellite
loci distributed throughout the genome in their simulations. With
such an approach we cannot build a pedigree backwards in time
without knowing DNA at the loci that are under selection. It is

therefore not possible to use the backward simulation algorithm of
Sections 2.1.1-2.1.4, since the pedigree is generated before DNA is

assigned through gene dropping and mutations. Instead a forward
simulation algorithm (see Section 1.4) is required, and this is very
time consuming for the worldwide human population.

For this reason we confine ourselves to describe a hybrid model
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that combines forward and backward simulation. It is applicable

when balancing selection only operates on one single haplotype
block hbq0 (1 ≤ q0 ≤ Q), located in an autosomal region of DNA.

This region has to be small enough so that ordinary recombinations

and gene conversions within it can be neglected. This could be of
interest, for instance, in order to generate diversity at parts of the

HLA or blood group system regions referred to above. In more

detail, the hybrid simulation algorithm looks as follows:

1. In the first step we build the pedigree, drop DNA and
generate new mutations at all loci l ∈ hbq0 within the

selected haplotype block. This is done forwards in time for

the whole population (1) of individuals.

2. In the second step we select a sample of n chromosomes out

of the 2N0 simulated individuals of time point 0 from Step

1.

3. In the third step, we build the ancestral recombination

graph of the n sampled chromosomes from Step 2, using

the fact that a pedigree already exists, as well as genetic
inheritance at hbq0 . This means that each chromosome
(t, c) ∈ C in (8) from a non-founder time point t < tmax

already has a parental chromosome ptq0(c) from which its

DNA at haplotype block hbq0 was inherited, and therefore
the coalescence tree of this haplotype block is completely
specified from Step 2.

In order to build the rest of the ARG, crossovers are gen-

erated as in Subsection 2.2 for all ancestral chromosomes
(t, c) ∈ AC from non-founder time points. This makes it

possible to define inheritance of (t, c) recursively at all hap-

lotype blocks hbq other than hbq0 . For the blocks to the
right of hbq we use (66) for q = q0 + 1, . . . , Q, whereas for

those to the left we use

ptq(c) = pt,q+1(c), if hbbq /∈ RECtc,

ptq(c) 6= pt,q+1(c), if hbbq ∈ RECtc,

for q = q0 − 1, . . . , 1. Once ptq(c) has been defined for all
ancestral chromosomes and all haplotype blocks, we build
the ARG as in Figure 13.

When the haplotype block structure (apart from the selected
block hbbq0 ) is not known in advance, it has to be generated

simultaneously with the ARG, as described in Section 2.3.

4. Ancestral mutations are defined at all haplotype blocks

other than hbq0 . DNA is then dropped from the founder

generation as described in Section 3, at all these haplotype
blocks.

It remains to define the algorithm of Step 1 in more detail (see
Figure 24 for a summary). For simplicity, we will assume a de-

mographically homogeneous population without demes that has
non-overlapping generations. This is the framework of the pedigree

algorithm of Section 2.1.1, which we modify in three ways: First,

the children of generation t that will have parents from generation
t+ 1 assigned to them, is not the set of ancestral individuals AIt,

but the much larger set

It = {i; (t, i) ∈ I} = {1, . . . , 2Nt}

of all individuals of generation t. Second, time proceeds for-

wards (t = tmax − 1, tmax − 2, . . . , 0) rather than backwards (t =
0, 1, . . . , tmax − 1). Third, only some children survive birth, with

probabilities depending on their genotypes at hbq0 . More specifi-

cally, we let

Gti = (h
(q0)
t,2i−1, h

(q0)
t,2i ) (108)

be the genotype of individual (t, i) ∈ I at the selected haplotype

block hbq0 . It consists two haplotypes

h
(q0)
tc = (atc,lq0−1 + 1, . . . , atc,lq0 )

of nucleotides atcl from the chromosome c that (t, i) inherited
at this haplotype block from its father (c = 2i − 1) or mother

(c = 2i). Selection enters the algorithm of Figure 24 in terms of the

probability S(Gti) that an individual with genotype Gti survives
birth, grows up and becomes an adult. If not, we need to repeat

the procedure and assign parents and a new genotype to (t, i),

until we eventually obtain a child that reaches the adult stage.

For simplicity of notation we will write h
(q0)
t,2i−1 = h1 and h

(q0)
t,2i−1 =

h2 for the two haplotypes of (t, i) at haplotype block hbq0 . That is,

we consider a fertilized egg whose genotype G = (h1, h2) is formed
at the selected locus, with hc = (acl; l ∈ hbq0) the haplotype

derived from the sperm cell (c = 1) or ova cell (c = 2) at haplotype

block hbq0 . The simplest kind of balancing selection has a survival
probability

S(G) =

{
1, h1 6= h2,

1− s, h1 = h2,
(109)

for some selection coefficient s. This means that heterozygous

individuals always survive, whereas homozygous individuals have a
probability s of not becoming adults. A more sophisticated survival
function takes into account how different the two haplotypes h1
and h2 are in terms of their diversity (or Hamming distance)

div(h1, h2) = |{l; lq0−1 < l < lq0 , a1l 6= a2l}|,

i.e. the number of loci at which they differ. Suppose the optimal

diversity between h1 and h2 is divopt in terms of maximizing
selective advantage. If the diversity increases beyond that, gene
function or gene regulation gets interrupted, and when it exceeds

divmax, the fertilized cell will die with certainty. We formalize this
as

S(G) =


1− s · (div(h1,h2)−divopt)

2

div2
opt

,

1− (div(h1,h2)−divopt)
2

(divmax−divopt)2
,

0,

as to whether the diversity satisfies 0 ≤ div(h1, h2) ≤ divopt,

divopt ≤ div(h1, h2) ≤ divmax or div(h1, h2) ≥ divmax. In partic-
ular, homozygots (div(h1, h2) = 0) have a survival probability of
1− s, as in (109). Then the survival probability increases quadrat-

ically up to a maximum of 1 at div(h1, h2) = divopt, and after
that it decreases quadratically down to 0 at div(h1, h2) = divmax.
Possible parameter values could be divopt = 10 and divmax = 100.

But this depends heavily on how the different amino acids interact

in the protein that gene(s) in hbq0 code for.
Another selection model used in [193], is

S(G) =

{
0, 0 ≤ div(h1, h2) < εdivmax,
1, εdivmax ≤ div(h1, h2) ≤ divmax.

This could be of interest, for instance, when all loci are single
nucleotides, and it is known that the haplotype block hbq0 harbours
at most divmax single nucleotides polymorphisms. For survival it is
required that an individuals is heterozygous for at least a fraction

ε of these SNPs.

5. CONCLUSIONS
In this paper we proposed a mathematical model for simulation of

human genetic data based on the assumption that the worldwide
human population originates from one single couple. The main

idea is to build an ancestral recombination graph backwards in
time for all sampled individuals. The model is very flexible and
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FOR t = tmax − 1, tmax − 2, . . . 0 DO
INITIATE
ft+1 = mt+1 = Ct+1,m = Ct+1,mf = 0 for all m, f

END
FOR i = 1, . . . , 2Nt DO

WHILE parents for (t, i) and its DNA at hbq0
have not yet

been selected
Parents (m, f) of (t, i) are proposed with distribution (68),

where j=i-1
Choose grandpaternal modes of inheritance of (t, i) for its

DNA at hbq0 as in (62)-(63)

Pass on paternal DNA h
(q0)
t,2i−1 = h

(q0)

t+1,pt,q0
(2i−1)

and maternal DNA h
(q0)
t,2i = h

(q0)

t+1,pt,q0
(2i)

at hbq0

Update h
(q0)
t,2i−1 and h

(q0)
t,2i with mutations

Define Gti as in (108)
Select parents (m, f) and DNA Gti of (t, i) at hbq0

with
probability S(Gti)

END
Keep the selected parents (mt(i), ft(i)) = (m, f) of (t, i) and

its DNA Gti at hbtq0
Update the relevant ft+1,mt+1, Ct+1,m, Ct+1,mf

END
END

Figure 24: Step 1 of the balancing selection algorithm, where the geneal-
ogy is generated forwards in time at an autosomal haplotype block. This
block is denoted hbq0 , and it is assumed that generations are non-overlapping
with no geographic substructure. doi:10.5048/BIO-C.2016.4.f24

allows for different demographic scenarios, with time varying popu-
lation sizes and possible migration between geographic subregions.

Reproduction is based on a dioecious and diploid framework where

males and females are treated separately, so that different mating
scenarios are possible. The model also incorporates ordinary re-

combination events, gene conversion, neutral mutations, and age
structure in terms of overlapping generations. An extension of
the model with mixed forward and backward simulation allows for

balancing selection as well. One particularly important parame-
ter is the created diversity, which makes it possible to obtain a
substantial amount of genetic diversity for nuclear autosomal and

X-chromosome DNA, during a relatively short period of time.

In subsequent papers, we plan to simulate human DNA data from

our proposed model in order to assess how well it fits real data.
The description of the mathematics is quite detailed. The rationale

for this is that other research groups may implement the model as

well, in order to test a wide range of different population history
scenarios. A challenging continuation of this project is first to

develop a more automated inference procedure, in order to find the

best fitting population history within a unique origin framework,
and then to compare it with a best fitting common ancestry model.
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