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Abstract

Alternative models to the theory of universal common descent have, thus far, been underdeveloped. Our previous work introduced
a dependency graph model as an alternative way of explaining the patterns of genetic similarity and diversity among living things.
According to this model, different forms of life share similarities because they share function-specific genetic features (modules)
that may have dependencies on other genetic features. Here, we introduce a tool (AminoGraph) that infers dependency graphs
from protein sequence alignments, and we apply this to prestin, a mammalian auditory protein that requires special modifications
for ultrasonic hearing in species that use echolocation. Prestin sequences from some echolocating bats show similarities with prestin
sequences from echolocating whales. Conventional analyses interpret this as convergence, not because convergence is known to be
evolutionarily feasible, but because this preserves the presumed phylogenetic tree. The AminoGraph analysis of prestin presented
here provides an alternative explanation: echolocation is supported by two prestin-modifying modules, one or both of which are
seen in all echolocating bats and whales. The reliability of this inference is increased by thorough testing of AminoGraph on
generated test data sets where sequences are either unrelated, related by common descent, or related by deployment of modules.
In all cases, AminoGraph produces the expected relationships.
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1. INTRODUCTION

In our previous work [1], we introduced the dependency
graph of life as an alternative model to universal com-
mon descent. According to this model, different forms
of life share similarities due to sharing common modules
much the same way different software programs share
similarities and code due to reusing common modules.
The modules used in a particular organism or program
are constrained by a dependency graph. In a dependency
graph, some modules depend on other modules, such
that a module cannot be included without also including
its dependencies. Under the theory of universal common
descent, taxonomic categories are defined by the most
recent common ancestor of all species within that cate-
gory. In contrast, under the dependency graph model,
taxonomic categories are defined by a module on which

all species in that category depend either directly or
transitively.

Our previous work [1] evaluated the model by us-
ing Bayesian model selection to determine whether the
distribution of gene families across species better fit a
tree, as predicted by common descent, or a dependency
graph. It was determined that across nine different gene
databases—each using their own system for classifying
genes into gene families—the data fit the dependency
graph model overwhelmingly better than that of a tree.
However, this was only a first step in evaluating whether
or not this model could explain the pattern of similarities
and differences found in living things.

This paper expands on previous results, transitioning
from binary datasets (presence-absence) of particular
gene families in particular genomes to datasets of amino
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acid alignments. The accuracy of presence-absence data
is limited both by the accuracy in identifying all of the
genes found in a particular species’ genome and by the
accuracy in classifying those genes correctly into gene
families. It is possible that the apparent success of the
dependency graph model on those datasets was an arti-
fact of inaccurate gene-identification and classification
data in the databases. Nevertheless, that outcome would
require those possible inaccuracies to induce a depen-
dency graph pattern in the resulting data, and it is not
clear how or why that should be the case.

More crucially, binary data sets are not the sort of
dataset from which common descent is usually inferred.
Papers seeking to test the hypothesis of common ancestry
typically utilize genetic sequences [2–5]. They do not
consider whether or not two species share a similar gene,
but consider the pattern of similarities and differences in
the sequence of amino acids in a protein or nucleotides
making up a gene. The dependency graph model must
account for these patterns if it is to be a successful theory.

Further improvements include more accessible results
and higher quality inferred graphs. The previous work
provided a detailed description of the algorithm used
to infer the dependency graph, but relatively few would
have the ability to implement the algorithm themselves.
This work provides a new tool: AminoGraph. This tool
allows interested researchers to analyze any amino acid
alignment. The inferred graphs for the original paper
were also provided as supplemental files, but these would
be challenging for most readers to interpret. Further-
more, the broad scope of the data evaluated along with
the resulting complexity of the inferred graphs made it
challenging to draw useful conclusions from the results.
Instead, this work focuses on a small example, that of
prestin in echolocating species, and thus, provides an eas-
ier to grasp example and illustration of the model. The
previous work was the first attempt to infer a dependency
graph. The purpose was to demonstrate that a graph
could be fit to the data rather than attempting to infer
the best possible graph. As such, drawing conclusions
from the inferred graphs would be dubious. However,
with AminoGraph, attention has been paid to attempt
to develop the model to produce useful and illuminating
results.

First, in Section 2, we will motivate the necessity of
a model like the dependency graph to account for the
problem of discordant phylogenies where different pro-
teins—and different amino acids within proteins—give
conflicting signals when attempting to infer a phyloge-
netic tree. We will specifically consider how this situ-
ation plays out for the prestin protein in echolocating
and non-echolocating whales and bats. In Section 3, we
will explain the dependency graph model for amino acid
sequences. In Section 4, we will look at results obtained
by analyzing amino acid alignments using the Amino-

Graph tool. We will look at how it performs on random,
simulated, generated, and biological data. Section 6 will
discuss the conclusions that can be drawn from the re-
sults. Section 7 is an appendix which will provide the
details of the probabilistic model.

2. THE PROBLEM: DISCORDANT PHYLO-
GENIES
Penny et al. (1982), in an early attempt to statisti-
cally verify common descent using genetic sequence data,
wrote [3]:

The theory of evolution predicts that similar
phylogenetic trees should be obtained from
different sets of character data.

More recent papers do not make this prediction. They
instead simply state that phylogenetic trees inferred from
different genes or proteins are often in conflict [6–10].

The most frequently given explanation for this conflict
is incongruence between the species tree and the gene
tree [11]. This divergence arises for a number of different
reasons including incomplete lineage sorting, horizontal
gene transfer and gene duplication/extinction. If every
gene were a simple, possibly mutated, copy of the same
gene in the organism’s immediate ancestor, then the
gene tree and species tree would be the same. However,
because that gene might derive from either the mother or
father of the organism, some other organism entirely or
another copy of the gene, the gene tree is not necessarily
identical to that of the organism as a whole.

The secondary explanation cited is convergent evo-
lution, in which the same changes are gained or lost in
multiple lineages, clouding the phylogenetic signal. This
could happen simply by random chance. Given sufficient
data, there will certainly be cases in which, purely by
coincidence, the same mutation occurs multiple times.
Alternatively, if selection favors certain mutations, this
would help explain why the same mutation would be
preserved in multiple lineages.

To better illustrate the issue, we will consider the case
of echolocating mammals (bats and cetaceans), whose
relationships are depicted in Figure 1. Traditionally,
bats were divided into two groups: megabats and mi-
crobats. Megabats are larger, eat fruit, and do not use
echolocation: examples include the fruit bats and fly-
ing foxes. Microbats are smaller and use echolocation:
examples include horseshoe bats and the vesper bats.
However, on the basis of genetic analysis, bat phylogeny
has been reorganized. The new clade Pteropodiformes is
divided into Pteropodidae, containing all the megabats,
and Rhinolophoidea, which contains some of the micro-
bats, including the horseshoe bats. Vespertilioniformes
is a sister clade to Pteropodiformes and contains the
remaining microbats, including the vesper bats.
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For the cetaceans, the situation is simpler. They are
divided into the toothed whales—Odontoceti—which en-
gage in echolocation and the baleen whales—Mysticeti—
which do not.

There are thus three clades which utilize echoloca-
tion: Vespertilioniformes, Rhinolophoidea and Odonto-
ceti. According to the standard evolutionary account,
all three groups evolved echolocation separately. Bats
and cetaceans are distant relatives under the theory of
common descent. Bats are held to have diverged from the
line leading to cetaceans early in mammalian history. Nu-
merous other clades, leading to many well-known species
of mammals, have branched away from the line leading
to cetaceans since the divergence from bats.

Prestin is a motor protein used in hair cells in the
inner ear. Previous work by another group reported that
a phylogeny inferred from prestin’s amino acid sequence
brought all three echolocating groups together—both
clades of microbats and the toothed whales [12, 13]. In
order to confirm this result, we obtained a collection
of prestin sequences by combining sequences listed in
Ensemble [14], OrthoDB [15], and those referenced in pre-
vious papers that discussed their similarities [12, 13]. We
used the program Clustal W [16] to align these sequences
and obtain a phylogenetic tree using the nearest-neighbor-
joining algorithm. Figure 2 depicts the portion of the
tree containing the bats and cetaceans. The cetaceans
have been placed in the middle of the microbats in the
inferred phylogenetic tree. The bats in Rhinolophoidea
have been grouped with the other microbats in Vesper-
tilioniformes, instead of with the megabats in their sister
clade Pteropodidae. In accordance with the previous
research [12, 13], the echolocating species were again
grouped together in the phylogenetic tree inferred from
prestin.

A simple way to measure the fit of sequence data to a
tree is to count the minimum number of substitutions, in-
sertions and deletions required to obtain the observed se-
quences. Maximum-parsimony methods of phylogenetic
inference aim to select the tree with the smallest number
of such changes. We compared three trees constructed
by placing the Rhinolophoidea clade into three different
positions: 1) the standard tree where Rhinolophoidea is
a sister clade to Pteropodidae, the megabats, 2) a tree
where Rhinolophoidea is placed with the other microbats,
and 3) a final tree where Rhinolophoidea is placed as
a sister clade to Odontoceti, the echolocating toothed
whales. Instead of attempting to determine the single
tree which best fits the alignment, we determined how
many changes each individual position of the alignment
required. The results are shown in Table 1.

A number of loci are a better fit to a phylogeny which
brings together the microbats than in the standard phy-
logeny, as seen in columns 1, 2, 7, and 12. Inspection
of the amino acids for these columns shows that the

microbats tend to be similar to each other. However, col-
umn 19 suggests the opposite, that Rhinolophoidea and
Pteropodidae are more similar. Another set of loci are a
better fit to a phylogeny which places Rhinolophoidea
alongside Odontoceti, as seen in columns: 3, 4, 5, 8, 10,
13, 16, 17, and 18. Looking at the amino acids, we see
that the sequence for Rhinolophoidea has many similar-
ities to Odontoceti. However, many of those loci are
not restricted to Odontoceti but are found in the baleen
whales and even Suina (pigs). Nevertheless, there are loci
which present the opposite signal where Rhinolophoidea,
as might be expected, is more similar to the other bats.
This can be seen in loci 6, 9, 11, 14, and 15, where the
three groups of bats tend to be similar.

There are three strong signals that can be seen in
this prestin sequence. Firstly, the microbats, Vespertil-
ioniformes and Rhinolophoidea show similarities in their
amino acid sequences. Secondly, the Rhinolophoidea
and Odontoceti have similarities in their amino acid se-
quences. Thirdly, all of the bats have similarities in their
amino acid sequences. On the other hand, there is very
weak signal showing similarities among the Pteropodi-
formes, that is Rhinolophoidea and Pteropodidae.

There is only a weak signal bringing all of the echolo-
cating species together. There are not many similarities
which are common to all echolocating species. This is
somewhat surprising because we saw in Figure 2 that all
of the echolocating species are grouped together. This,
however, does not indicate a common signal between all
echolocating species. Rather, it reflects two signals, one
linking Odontoceti and Rhinolophoidea, and the other
linking Rhinolophoidea and Vespertilioniformes. The
only way for a tree to reflect both signals is to bring all
three groups together.

Table 2 summarizes these results and the fit of these
trees at the nucleotide level. The signals previously
discussed are present at both the amino acid and the
nucleotide levels. However, the signal favoring placing
Rhinolophoidea within the bats and specifically with
Pteropodidae is much stronger at the level of nucleotides.
Whereas the strongest signal at the amino acid level
favors grouping at least Rhinolophoidea with the echolo-
cating toothed whales (Odontoceti) the strongest signal
at the nucleotide level favors placing them with the other
bats. Indeed, phylogenetic inference based on nucleotides
for this alignment much more closely agrees with evo-
lutionarily expected phylogeny. Typically, phylogenetic
inference would follow the strongest signal, but this does
not tell the whole story. The other signal, while weaker,
still exists. To account for the data, any theory must
account for both signals.

The conclusion to be drawn is that the problem of
discordant phylogenies is not simply that some genes
or proteins suggest different phylogenetic trees than the
generally accepted species tree. Rather, we find that
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bats
Chiroptera

vesper	bats
Vespertilioniformes

Pteropodiformes megabats
Pteropodidae

horseshoe	bats
Rhinolophoidea

whales,	dolphins,	and	porpoises
Cetacea toothed	whales

Odontoceti

baleen	whales
Mysticeti

deer,	sheep,	goats
Ruminatia

pigs
Suina

camels
Tylopoda

horses,	rhinoceroses
Perissodactyla

dogs,	bears,	pangolins
Ferae

Figure 1: Phylogenetic tree showing the currently understood relationship between the echolocating clades and closely related non-
echolocating clades. The five clades of interest of bats and cetaceans are each given a unique color which will be used throughout the paper.
The icon next to Vespertilioniformes, Rhinolophoidea and Odontoceti denotes that these clades use echolocation. doi: 10.5048/BIO-C.2023.1.f1

Table 1: Alignment of loci in which relocating the Rhinolophoidea clade changes the minimum required number of amino acid changes
to account for the observed alignment. The icons and colors used for each clade correspond to Figure 1 for easier comparison. The three
rows on the bottom give the minimum number of amino acid changes required to account for the data in the three different trees. The numbers
corresponding to the tree with the smallest number of changes are marked in bold.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Myotis lucifugus T L P I A M S L A D D I I I V N S K P
Myotis brandtii T L P I A M S L A D D I I I V N S K P
Myotis ricketti T L P I A M S F A D D I I I V N S K P
Eptesicus fuscus T L P I S M S L A D D V I I V N S K P
Miniopterus fuliginosus T L P I S M S L A D E I I F V N Q K P
Miniopterus natalensis T L P I S M S L A D E I I F V N Q K P

Megaderma spasma T S S I S M S L A D D I T F V N Q L P
Rhinolophus pusillus T L S T A M S F A E D V T F V S R L T
Rhinolophus sinicus T L S T A M S F A E D V T F V S R L T
Rhinolophus ferrumequinum T L S T A M N F A E D V I F I S R L T
Rhinolophus luctus T L S T A M S F A G D V I F V S Q L M
Hipposideros armiger T L S T A M N F A E E I I F V S R L T
Hipposideros larvatus T L S T A M N F A E E I I F V S R L T
Hipposideros pratti T L S T A M N F V E E I I F V S R L T
Aselliscus stoliczkanus T L S T A M S F A E E I T L V S R L T

Delphinapterus leucas S P S T A L S F V E N I T L I S R L P
Monodon monoceros S P S T A L S F V E N I T L I S R L P
Orcinus orca T P S T A L S F V E D I T L I S Q L P
Tursiops truncatus T P S T A L S F V E D I T L I S Q L P
Phocoena sinus S P S T A L C F V E D I T L I S R L P
Lipotes vexillifer S P S T A L S F V E N I T L I S R L P
Physeter catodon N P S T A L S F V E N I T L V D R L P

Balaenoptera musculus N P S I S L S L V E N I I L I N R L P
Balaenoptera acutorostrata scammoni N L S I S L S L V E N I I L I N R L P

Rousettus leschenaultii N P P I S M N F A - D V I F V N Q R T
Rousettus aegyptiacus N P P I S M N F A - D V I F V N Q R T
Pteropus vampyrus N P P I S M N L A - D V I F V N Q R A
Pteropus alecto N P P I S M N L A - D V I F V N Q R A
Cynopterus sphinx N P P I S M N L A - D V I F V N Q R T

Sus scrofa N P S I S L N L V E D I I F I D R R P
Catagonus wagneri N P S I S L N L V V D I I F I D R R P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Standard Tree 10 6 11 5 5 1 14 23 16 20 18 17 13 1219 8 14 11 10
Rhinolophoidea with microbats 9 5 11 5 5 1 13 23 16 20 1816 13 1219 8 14 11 11
Rhinolophoidea with Odontoceti 10 6 10 4 4 2 1322 17 19 19 1612 13 20 7 1310 11
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Table 2: The number of nucleotide and amino acid loci for which each tree has the best and worst minimum number of required
nucleotides or amino acid changes. This summarizes how often each tree does a better or worse job of accounting for the observed amino
acid and nucleotide sequences than the two alternatives. Generally, there are approximately twice as many nucleotide loci as amino acid loci for
which a given tree requires either fewer or more changes than the alternatives. The biggest exception is placing Rhinolophoidea with Odontoceti.
This requires additional changes for ten times as many nucleotides as amino acids. A smaller exception is that moving away from the standard
tree requires six nucleotide substitutions but only one amino acid substitution. The signal favoring placing Rhinolophoidea with the other bats,
and Pteropodidae specifically, is much stronger at the nucleotide level than the amino acid level. This primarily corresponds to synonymous
nucleotide differences.

Requires Fewest Changes Requires Most Changes

Tree Nucleotides Amino Acids Nucleotides Amino Acids

Standard Tree 6 1 25 13
Rhinolophoidea with Vespertilioniformes 5 2 23 10
Rhinolophoidea with Odontoceti 16 9 81 8

even within a single gene or protein, such as the prestin
protein, phylogenetic trees are only capable of represent-
ing one signal, and thus, phylogenetic inference programs
attempt to choose the signal with the greatest strength.
This is not an accurate reflection of the data. Instead,
we need a theory that can accommodate these conflicting
signals.

3. A DEPENDENCY GRAPH MODEL OF
AMINO ACID SEQUENCES
Such conflicting signals are expected under the depen-
dency graph hypothesis. Recall that this hypothesis
proposes that genomes were constructed by drawing on
a number of modules rather than adapted from a single
common ancestor. Consequently, different parts of the
genome will show different patterns of similarities de-
pending on which modules influenced that section of the
genome. Likewise, different parts of a gene or protein
would be expected to be influenced by different modules,
and thus, show different signals of similarity. Our prior
work [1] developed the dependency graph model in terms
of the binary presence or absence of particular gene fami-
lies. This was done primarily because it was the simplest
and most straightforward way to explain the dependency
graph model. We can extend that model by allowing
modules not only to add or remove genes or proteins but
also to modify them.

How would this apply to the particular case of echolo-
cation and the prestin protein? The obvious approach
might be to postulate the existence of an echolocation
module. However, when we considered the sequences in
Section 2 we found that there is not a strong signal of sim-
ilarity shared among all echolocating prestins. Rather,
we found that Rhinolophoidea’s prestin is clearly similar
both to Odontoceti’s prestin and to Vespertilioniformes’
prestin, but in different ways. Rhinolophoidea’s prestin
does not share the same set of similarities with Odon-
toceti’s prestin that it does with Vespertilioniformes’
prestin. Consequently, it makes sense to postulate two
different modules, which we will call “Echolocation A”

and “Echolocation B.” We term them echolocation mod-
ules because we postulate that each represent a distinct
optimization applied to prestin to facilitate echolocation.

Consider a possible dependency graph of the bat and
cetacean clades depicted in Figure 3. In this graph,
the Pteropodidae and Rhinolophoidea are related be-
cause they share a common module: Pteropodiformes.
However, Rhinolophoidea is also related to Vespertilioni-
formes because it shares the “Echolocation A” module.
Rhinolophoidea and Odontoceti share an “Echolocation
B” module. This graph captures different relationships
and can thus explain similarities among traditional evo-
lutionary clades as well as between the microbats and
among all the echolocating species.

Essentially, we can think of a module as a list of
changes to the amino acid sequence. Each module merges
together all of the changes from the modules it depends
on before adding its own changes. For example, in Fig-
ure 3, the Echolocation A module inherits all of the
changes made in Chiroptera and passes these them on
to Rhinolophoidea and Vespertilioniformes. Pteropodi-
formes also inherits the changes from Chiroptera, and
so Rhinolophoidea inherits two copies of the Chiroptera
changes. However, because these are the same changes
they do not conflict, and there is no problem.

Within the dependency graph model, every protein
must be introduced by a module that defines the archetyp-
ical amino acid sequence for that protein. All other
modules which modify that protein must depend on the
module that introduced it. In consequence, as long as we
are considering a single protein (as is the case in Amino-
Graph), there will always be one root module which
introduces the protein and all other modules will have at
least one dependency. This can be seen in Figure 3, in
which all module dependencies trace back to Mammalia.

However, what happens if there is a conflict? What
happens if a module has two dependencies each of which
contain instructions to modify the same amino acid?
Which change will actually apply? In software engineer-
ing, such conflicts are best avoided, and so, we simply
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Hipposideros	pratti
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				Odontoceti toothed	whales
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Physeter	catodon

Balaenoptera	musculus
				Mysticeti baleen	whales
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Pteropus	vampyrus
				Pteropodidae megabats

Pteropus	alecto

Cynopterus	sphinx

Sus	scrofa
				Suina pigs

Catagonus	wagneri

Figure 2: The subset of the phylogenetic tree inferred by Clustal
W based on an amino acid alignment of prestin in 134 mammalian
species. The subset containing the cetaceans and bats is shown.
Pig-like animals are also included because the inference placed them
within the bats and cetaceans. The icons and colors used for each
clade correspond to Figure 1 for easier comparison. The echolocating
clades have been grouped together despite being distantly related
according to evolutionary theory. doi: 10.5048/BIO-C.2023.1.f2

Figure 3: A hypothesized dependency graph relating the bats and
cetaceans. The icons and colors used for each clade correspond to
those in previous figures for easier comparison. Rather than a simple
tree structure, this graph includes two echolocation modules which
transcend a tree structure. The dependency graph model proposes
that the species are related by this structure, explaining conflicting
phylogenetic signals in the amino acid sequence. doi: 10.5048/BIO-
C.2023.1.f3

forbid them in the model. This avoids scenarios in which
the order of application of modules might change the
outcome. However, there is an important exception. A
module may override changes found in that module’s
dependencies. For example, a change made in “Echolo-
cation A” may override a change made in Chiroptera.
This follows common practice in software engineering,
where a more specific version is allowed to override a
more general version.

Efficiently tracking whether a given change counts as
an override is difficult. Accordingly, AminoGraph uses
an approximation. Each change has a “depth” that is
incremented by one every time it is overridden. Changes
with more depth are allowed to override changes with
less depth. In cases in which a more derived module
alters an inherited change, the depth will, by definition,
be increased and thus have higher precedence than the
changes it overrides.

AminoGraph takes any amino acid alignment as input
and attempts to infer a dependency graph that best fits
the data. It does this by exploring various graphs, look-
ing for the one with the best fit to the data by drawing
on Bayesian inference. In particular, it evaluates a prior
over possible graph structures and a likelihood of the ob-
served amino acid alignment given those structures. The
prior is a probability distribution defining how probable
different dependency graph structures are considered to
be before looking at the evidence from the amino acid
alignment. It is defined so that simpler structures have
higher probability, thus favoring more parsimonious ex-
planations. The likelihood is the probability of obtaining
the observed amino acid sequences given the particu-
lar structure. The total fit to the data is the product
of the likelihood and the prior, incorporating both the
prior probability of the structure and the likelihood given
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that structure. See the appendix for the details of the
formulas used to evaluate the prior and the likelihood.

4. RESULTS
4.1 Approach
We ran AminoGraph on a variety of amino acid align-
ments. When run, AminoGraph outputs a graph repre-
senting the structure that it infers to be present in the
alignment. We classify these graphs into three different
topologies. The simplest topology is a star topology,
which models the alignment as the product of a single
original sequence where each observed sequence in the
alignment is an independently randomly modified version
of that original sequence. In this topology, the different
sequences have no relationship with each other besides
being derived from the same original archetypical form.
This is the result we expect when there is no structure
in the data. The tree topology corresponds to a phy-
logeny from the theory of common descent. There is an
ancestral sequence which undergoes a branching process,
producing a tree. We expect this topology when the data
are generated by something like common descent. The
graph topology corresponds to the dependency graph
model; We expect this topology when the alignment was
actually produced by something like the model developed
in this paper.

4.2 AminoGraph on Generated Amino Acid Align-
ments

As a first check to see if the results are realistic, we
generated an amino acid sequence alignment following
the dependency graph depicted in Figure 3. If the tool is
unable to infer a dependency graph from data generated
this way, this would indicate that it does not work as
intended. The root, Mammalia, began with an amino
acid sequence where each position was randomly selected
uniformly from the set of all amino acids and a gap.
For each node, five positions were assigned a random
character, i.e. amino acid or a gap. Under each leaf,
we introduced four new leafs corresponding to four indi-
vidual species which evolved from the original ancestral
type. In each case, we assume that the original type
split into two species, and each of those two species split
again to form a total of four species. For each split we,
as for the nodes, applied five random amino acid changes.
Our goal was to determine how well AminoGraph recon-
structs the dependency graph from the resulting amino
acid alignment.

Figure 4 depicts the resulting dependency graph. It
closely resembles the dependency graph in Figure 3 upon
which the generative process is based. It correctly infers
the four species tree which was placed under each leaf
in the original graph. The one error is that it infers
Cetacea to depend on Chiroptera instead of inferring
that Cetacea and Chiroptera both depend on a common

Table 3: Results for random sequence alignments. Results in-
clude a variety of combinations of sequence length and number of
sequences. Randomly generated alignments are consistently classi-
fied as a star phylogeny because they have no structure.

Se
qu
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s

Le
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th

To
po
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gy

Pr
ob
ab
ili
ty
(b
its
)

10 50 Star 2,201.6
10 100 Star 4,323.6
10 200 Star 8,560.2
10 500 Star 21,210.6
10 800 Star 34,078.1
50 50 Star 10,942.8
50 100 Star 21,607.9
50 200 Star 42,855.2
50 500 Star 107,158.5
50 800 Star 170,623.0
100 50 Star 21,996.7
100 100 Star 43,442.1
100 200 Star 86,054.4
100 500 Star 213,615.9
100 800 Star 341,551.5
150 50 Star 32,868.0
150 100 Star 64,882.5
150 200 Star 128,882.4
150 500 Star 320,592.0
150 800 Star 512,182.9
200 50 Star 43,942.4
200 100 Star 86,612.9
200 200 Star 172,063.7
200 500 Star 427,593.8
200 800 Star 682,064.4

module, Mammalia. Postulating that Cetacea depends
on Chiroptera, or that Chiroptera depends on Cetacea, or
that Chiroptera and Cetacea both depend on Mammalia
all work approximately equally well to account for the
similarities and differences in these two groups. However,
postulating the existence of a Mammalia module is less
parsimonious, and thus, AminoGraph prefers one of the
other explanations. AminoGraph is able to correctly
infer the rest of the structure including both echolocation
modules.

4.3 AminoGraph on Random Amino Acid Align-
ments

As a second realism check, we ran AminoGraph on ran-
dom data to determine whether or not AminoGraph
infers structure where none exists. We generated a se-
lection of random amino acid sequences of varying sizes
and analyzed them. The results are shown in Table 3.

In every case, AminoGraph favored a star topology,
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Chiroptera

Pteropodidae 1

flying foxes

Pteropdidae

Pteropodidae 2

flying foxes

Pteropodidae 3

flying foxes

Pteropodidae 4

flying foxes

Verspertilioniformes 1

common bats

Vespertilioniformes

Verspertilioniformes 2

common bats

Verspertilioniformes 3

common bats

Verspertilioniformes 4

common bats

Rhinolophidae 1

Old World leaf-nosed bats

Rhinolophoidea

Rhinolophidae 2

Old World leaf-nosed bats

Rhinolophidae 3

Old World leaf-nosed bats

Rhinolophidae 4

Old World leaf-nosed bats

Odontoceti 1

tooth whales

Odontoceti

Odontoceti 2

tooth whales

Odontoceti 3

tooth whales

Odontoceti 4

tooth whales

Mysticeti 1

baleen whales

Mysticeti

Mysticeti 2

baleen whales

Mysticeti 3

baleen whales

Mysticeti 4

baleen whales

CetaceaEcholocation B

Pteropodiformes

Echolocation A

Figure 4: The dependency graph inferred by AminoGraph from an amino acid alignment generated following Figure 3. It closely
resembles the dependency graph in Figure 3. AminoGraph correctly inferred the four leaf trees which were added in the generation process.
The one difference between the generative process and the inferred graph is that Cetacea is inferred to depend on Chiroptera instead of both
Chiroptera and Cetacea depending on Mammalia. doi: 10.5048/BIO-C.2023.1.f4

one in which there is a single root and all the sequences
in the alignment are adapted versions of that root. Since
there is no pattern to the random data, neither a tree
nor a graph topology is a better explanation than the
simple star topology. This is true across a variety of
different numbers of sequences and sequence lengths.
The probability column gives the number of bits required
to explain the data. The numbers are large because the
data are random, and thus, not well explained by the
model.

4.4 AminoGraph on Pyvolve-Generated Sequences
As a third realism test, we evaluated how AminoGraph
handles data that were produced by a process of sim-
ulated common descent. We employed an evolution
simulator called Pyvolve [17] to generate amino acid
alignments. We used the ngesh python module to gener-
ate a variety of trees of differing sizes and scale and used
Pyvolve running under a number of different models to
generate amino acid alignments. Table 4 presents the
results.

In all but one case, AminoGraph inferred the align-
ment to best fit a tree. In the one exception, AminoGraph
did not find enough evidence to support a tree and pre-
ferred a star phylogeny. The prior column gives the
number of bits attributed to the graph prior for the in-
ferred tree. The prior tends to increase as the number
of sequences, sequence length, or median branch length
increases. This is because as there are more sequences
and changes to account for, AminoGraph infers more
complex trees.

The likelihood column gives the number of bits at-
tributed to the likelihood of the alignment given that
particular tree. The probability gives the prior and the
likelihood together. Note that the probabilities in this

table are smaller for similar sized alignment than the
ones in Table 3. This is because the data fit the tree
model in this case. The model does explain the data.

The false bipartitions column gives the number bi-
partitions present in the inferred tree from AminoGraph
but not present in the actual tree generated by ngesh

and followed by Pyvolve. This is a simple metric for
how similar the two trees are. It measures the number of
groups identified by AminoGraph that were not actually
present in the original tree. The extra nodes column
gives the number of nodes inferred by AminoGraph aside
from the ones dedicated to each sequence or the root. A
node corresponds to a taxonomic category or ancestral
species. We see consistently that only a small number of
groups are inferred to exist by AminoGraph that were
not present in the original tree. In many cases, it found
zero false bipartitions, indicating that it did not infer any
groups or clades that did not actually exist. This means
that AminoGraph infers trees similar to those actually
used in the simulation.

4.5 AminoGraph on TreeFam Alignments
We ran AminoGraph on fifty TreeFam [18] families ran-
domly selected from those which had at least fifty se-
quences. The results are summarized in Table 5.

AminoGraph infers almost all of the sequences to have
a graph topology. There are two exceptions. TF105771 is
inferred to be a star topology. The alignment is unusual
because one of the sequences is much longer than the
rest, resulting in an alignment that is much longer than
the most of the sequences. TF323869 is inferred to have
a tree topology. It has the shortest median length—too
short to infer a graph structure.

The extra nodes column gives the number of nodes in
the graphs beyond the required nodes for each sequence

Volume 2023 | Issue 1 | Page 8

http://dx.doi.org/10.5048/BIO-C.2023.1.f4


AminoGraph Analysis of Prestin

Table 4: Results for Pyvolve-generated sequences. Tests included a variety of sequences numbers, sequence lengths, mutational models,
and median branch lengths. Sequences generated according to a model of common descent are consistently classified as either a tree or
a star phylogeny. The sequence column gives the number of sequences in the generated alignment. It varies somewhat randomly because
ngesh’s random process does not guarantee a precise number of sequences. The length column gives the number of positions in the amino acid
alignment. The model column gives the name of the substitution matrix used by Pyvolve to determine how probable different possible changes
were. The median branch length column gives the median length of branches in the tree, obtained by scaling the trees generated by ngesh by
different amounts. The small numbers in the false bipartitions column indicate that the tree inferred by the algorithm is similar to the one followed
during the generation of the sequences. The extra nodes column indicates the degree to which the inferred tree deviated from a simple star
phylogeny.
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25 50 JTT 0.00784 Tree 95.8 561.4 657.2 1 8
15 100 WAG 0.00294 Tree 18.6 549.2 567.7 0 1
16 200 LG 0.00152 Tree 62.9 1,127.0 1,189.9 0 7
14 500 DAYHOFF 0.00921 Tree 64.7 3,835.2 3,899.9 0 9
12 800 AB 0.00386 Tree 50.9 4,639.2 4,690.1 0 7

127 50 MTMAM 0.00173 Star 0.0 1,107.8 1,107.8 0 0
98 100 MTREV24 0.00588 Tree 640.9 2,918.0 3,558.9 1 51

123 200 JTT 0.00353 Tree 811.7 3,865.5 4,677.2 3 57
90 500 WAG 0.00176 Tree 599.3 5,123.3 5,722.5 0 52

113 800 LG 0.00719 Tree 878.4 23,571.8 24,450.1 0 91
175 50 DAYHOFF 0.00409 Tree 979.8 1,379.7 2,359.5 6 37
183 100 AB 0.00191 Tree 1,061.9 1,721.2 2,783.1 1 42
196 200 MTMAM 0.00674 Tree 1,512.6 9,794.3 11,307.0 7 113
204 500 MTREV24 0.00395 Tree 1,686.8 15,735.1 17,422.0 7 145
145 800 JTT 0.00140 Tree 1,079.6 10,745.2 11,824.8 1 89
275 50 WAG 0.00670 Tree 1,893.5 2,905.8 4,799.3 10 84
302 100 LG 0.00332 Tree 2,262.9 4,230.8 6,493.8 8 118
244 200 DAYHOFF 0.00167 Tree 1,597.9 3,602.6 5,200.4 3 68
300 500 AB 0.00797 Tree 2,602.6 38,920.7 41,523.3 0 202
270 800 MTMAM 0.00309 Tree 2,335.0 25,934.7 28,269.7 3 191
407 50 MTREV24 0.00184 Tree 1,879.8 1,673.3 3,553.1 5 22
400 100 JTT 0.00693 Tree 3,386.3 9,542.6 12,928.9 9 206
409 200 WAG 0.00353 Tree 3,514.4 11,407.2 14,921.7 5 220
396 500 LG 0.00166 Tree 3,338.5 14,236.4 17,574.9 7 202
355 800 DAYHOFF 0.00651 Tree 3,270.9 63,529.3 66,800.3 0 270
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Table 5: Results for TreeFam alignments. In almost all cases, AminoGraph infers the data to be a graph rather than a tree. The extra
dependencies column indicates the number of dependencies that would have to be removed in order to convert the graph into a tree. It is a
measure of how far the graph diverges from a tree.
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TF105417 248 4307 1194 Graph 4,502.0 371,044.3 375,546.3 235 202

TF105709 96 1891 576 Graph 758.7 130,474.4 131,233.1 48 13

TF105771 189 5791 353 Star 0.0 392,263.6 392,263.6 0 0
TF106404 84 1229 571 Graph 843.6 89,746.7 90,590.2 57 26

TF300182 96 268 98 Graph 622.2 16,572.9 17,195.0 40 3

TF300659 166 1338 382 Graph 1,728.9 79,838.7 81,567.5 92 47

TF300677 102 733 499 Graph 1,166.6 67,926.5 69,093.2 73 42
TF300784 121 1670 538 Graph 1,202.1 131,447.4 132,649.5 75 31

TF312818 133 1077 524 Graph 1,517.9 123,650.8 125,168.7 95 47

TF313175 90 1575 327 Graph 682.0 79,301.3 79,983.3 43 11

TF313459 161 984 205 Graph 1,601.0 60,767.0 62,368.0 96 35
TF313797 304 960 328 Graph 3,843.5 123,180.4 127,023.9 199 106

TF313998 58 523 403 Graph 367.6 39,000.5 39,368.1 20 8

TF314814 115 594 140 Graph 751.5 22,781.1 23,532.5 41 5
TF314964 102 1797 792 Graph 1,188.3 137,109.2 138,297.5 67 48

TF315172 114 318 134 Graph 756.2 20,766.3 21,522.5 41 6

TF315217 167 3296 416 Graph 2,016.3 156,477.3 158,493.7 108 69

TF316050 123 937 338 Graph 980.6 98,008.3 98,988.9 59 14
TF316508 80 923 228 Graph 531.2 51,710.9 52,242.2 39 3

TF317588 108 591 176 Graph 938.0 27,602.9 28,540.9 52 23

TF318932 226 1598 107 Graph 1,815.5 90,108.5 91,924.0 97 13
TF319487 89 173 71 Graph 539.1 7,267.7 7,806.8 28 5

TF319889 65 627 279 Graph 526.9 24,019.9 24,546.8 34 14

TF320752 91 2658 882 Graph 960.6 205,192.5 206,153.1 52 38

TF321860 89 1104 238 Graph 690.4 48,441.7 49,132.0 44 12
TF323735 86 1626 446 Graph 840.9 70,909.6 71,750.5 52 27

TF323838 64 632 189 Graph 415.6 38,172.7 38,588.3 28 5

TF323869 58 308 58 Tree 284.7 6,556.6 6,841.4 19 0
TF324074 77 8683 875 Graph 669.7 202,871.3 203,541.1 34 24

TF324175 86 2379 1206 Graph 1,047.4 180,813.2 181,860.6 66 44

TF324238 88 1111 618 Graph 870.9 101,823.1 102,694.0 54 28

TF324402 57 156 79 Graph 313.7 9,032.2 9,346.0 22 1
TF324417 66 1266 788 Graph 540.3 100,882.6 101,422.9 34 15

TF324441 235 1910 532 Graph 2,535.9 310,406.0 312,941.9 138 57

TF324883 80 479 143 Graph 517.5 26,171.1 26,688.6 34 4

TF325196 148 4961 375 Graph 1,345.0 233,454.3 234,799.3 89 21
TF328358 204 1858 533 Graph 2,114.4 200,042.5 202,156.9 111 50
TF329158 167 1334 343 Graph 1,530.1 166,481.9 168,012.0 81 31

TF331604 102 1010 696 Graph 1,002.4 109,377.5 110,380.0 60 30
TF332303 56 507 450 Graph 399.9 26,415.1 26,815.0 26 9

TF332900 87 3140 921 Graph 953.5 150,829.4 151,783.0 57 37

TF333215 57 424 254 Graph 362.5 33,026.3 33,388.8 28 3

TF336515 110 642 463 Graph 1,025.7 52,946.8 53,972.5 60 27
TF339438 51 228 139 Graph 317.4 12,195.2 12,512.6 21 5

TF342033 95 955 489 Graph 1,343.1 85,632.6 86,975.7 73 69

TF342861 63 891 385 Graph 483.6 78,466.3 78,949.9 36 9
TF350735 371 2291 279 Graph 7,269.9 223,416.8 230,686.7 376 306

TF350893 86 1854 710 Graph 993.4 112,652.7 113,646.1 73 34

TF351335 257 1820 321 Graph 3,647.2 153,643.1 157,290.3 180 133

TF352582 105 1126 424 Graph 918.6 107,282.0 108,200.7 61 18
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and the root. The extra dependencies column gives the
number of dependencies beyond the one required per
non-root node. It is the number of dependencies that
would have be pruned in order for the graph to become
a tree, and therefore a measure of how far from a tree
the graph is.

4.6 AminoGraph and Prestin Alignment
AminoGraph infers the prestin alignment, discussed previ-
ously in this paper, to be best explained by a dependency
graph. Figure 5 depicts the dependency graph restricted
to the nodes related to the bats and cetaceans, resem-
bling the hypothesized dependency graph in Figure 3.
There is a Chiroptera or bat module that all the various
bat species depend on. There is a Cetacea module that
all the cetaceans depend on. The five major groups each
show up in a cluster in this graph.

Megaderma spasma is grouped with Vespertilioni-
formes instead of with Rhinolophoidea. The same mis-
placement was found in the inferred phylogenetic tree in
Figure 2. The prestin sequence in Megaderma spasma
more closely resembles that of Vespertilioniformes than
that of Pteropodidae. Thus, when considering only the
sequence of prestin, it is grouped with those species.

There is an Echolocation A module, which all micro-
bats depend on. However, there is no module correspond-
ing to Pteropodiformes, the combination of megabats
and those microbats thought to be more closely related to
them. Recall that when we considered the sequence data,
we found there was a very weak signal in the prestin to
group these species together. As such, it makes sense that
AminoGraph did not infer one here. The Echolocation B
module is depended on both by the echolocating whales
(Odontoceti) and by some of microbats (Rhinolophoidea).
However, it is not depended on by Vespertilioniformes
or the microbat module. This reflects the signal showing
similarities between the toothed whales (Odontoceti) and
one clade of microbats (Rhinolophoidea).

When we first started this research project, we ex-
pected to find a single echolocation module. This was
based on an assumption that there were similarities across
all of the echolocating clades of bats and cetaceans that
explained the misplacement found in previous phyloge-
netic inferences [12, 13]. However, as we developed the
AminoGraph tool, it refused to follow our preconceptions,
instead following the data. As discussed, the data indi-
cates three distinct signals of similarity and AminoGraph
is able to detect and separate these three signals. Com-
pare this with the conclusions that can be drawn from
the phylogenetic inference depicted in Figure 2. The tree
is simply not capable of capturing the complexity of the
patterns of similarities that the dependency graph model
can.

5. CONVERGENT EVOLUTION
It is clear that these amino acid sequences contain con-
flicting phylogenetic signals. Furthermore, these conflicts
cannot be explained as being due to incongruence be-
tween the gene tree and the species tree. In most cases,
they cannot be explained via any sort of exotic evolu-
tionary history. Indeed, in evolutionary terms, the “only
remaining reason” [12] is convergent evolution under the
influence of natural selection. Under this hypothesis,
there are conflicting signals because of the combination
of common descent and natural selection.

Convergent evolution due to natural selection is un-
doubtedly a real process that explains some biological
similarities. For example, convergent evolution has been
observed in the ongoing evolution of SARS-CoV-2 [19].
However, this is the ideal circumstance to enable con-
vergent evolution: an enormous population size, small
genome, high uniformity, and large selection effects. In
the case of the evolution of complex lifeforms, such as
mammals, we have small populations, large genomes,
high diversity and small selection effects. It is unex-
pected that convergent evolution would apply to these
situations. Indeed, the papers which published the molec-
ular convergence in prestin describe it as surprising or
unexpected [12, 13]. They invoke convergent evolution
not because it is an expected outcome but because it
the only remaining evolutionary option. Convergent evo-
lution does not seem a viable account of a widespread
pattern of conflicting phylogenetic signals.

Nevertheless, our purpose here is to develop the de-
pendency graph model rather than to disprove the possi-
bility of convergent evolution. We wish to demonstrate
the viability of the dependency graph model as an ac-
count of the similarities and differences in amino acid
alignments. Definitively disproving alternative accounts
is beyond the scope of this paper. We have given some
reasons to doubt the viability of selection-driven conver-
gent evolution as an account, but leave to future research
a fuller examination of the issue.

However, there is a common argument made for the
convergent evolution explanation. An example can be
found in one of the papers that postulated prestin con-
vergence [12]:

Indeed, the same misplacement of dolphin
is observed in the prestin tree reconstructed
with only nonsynonymous nucleotide substi-
tutions (Figure S1B); but, when only synony-
mous substitutions are used, dolphin and cow
are correctly grouped with 100% bootstrap
support.

The idea is that natural selection can cause convergent
evolution for nonsynonymous mutations, because they
alter the amino acid sequence, and thus, the fitness of
the protein. However, natural selection would not cause
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Mammalia

Chiroptera

Echolocation A

Pteropodidae

Cynopterus sphinx

Indian short-nosed fruit bat

Vespertilioniformes

Eptesicus fuscus

big brown bat

Miniopterus fuliginosus

Japanese long-fingered bat
Miniopterus natalensis

Megaderma spasma

lesser false vampire bat

Rousettus leschenaultii

Leschenault's rousette

Rousettus aegyptiacus

Egyptian rousette

Pteropus vampyrus

large flying fox

Pteropus alecto

black flying fox

Echolocation B

Myotis lucifugus

little brown bat

Myotis brandtii

Brandt's bat

Myotis ricketti

Rickett's big-footed Myotis

Rhinolophoidea

Cetacea

Mysticeti

Aselliscus stoliczkanus

Stoliczka's trident bat

Balaenoptera musculus

Blue whale
Balaenoptera acutorostrata scammoni

Odontoceti

Rhinolophus pusillus

Least horseshoe bat

Rhinolophus sinicus

Chinese rufous horseshoe bat

Rhinolophus ferrumequinum

greater horseshoe bat

Rhinolophus luctus

Woolly horseshoe bat

Hipposideros armiger

great roundleaf bat
Hipposideros larvatusHipposideros pratti

Pratt's roundleaf bat

Lipotes vexillifer

Yangtze River dolphin

Physeter catodon

sperm whale

Monodon monoceros

narwhal

Delphinapterus leucas

beluga whale

Phocoena sinus

vaquita

Orcinus orca

killer whale

Tursiops truncatus

common bottlenose dolphin

Figure 5: Inferred dependency graph from the prestin protein for bats and cetaceans. The icons and colors used for each clade correspond
previous figures for easier comparison. The figure resembles a more detailed version of Figure 3. doi: 10.5048/BIO-C.2023.1.f5

convergent evolution for synonymous mutations because
(it is argued) these changes have little to no effect on
the fitness of the protein. As such, the hypothesis of
convergent evolution explains why it is primarily among
nonsynonymous mutations that the data conflict with
the expectations of common descent.

However, we know that synonymous mutations af-
fect proteins in a variety of ways [20–24]. As such, it
is not that synonymous mutations have no effect, but
the effects of synonymous mutations differ in degree and
kind from the effects of nonsynonymous mutations. It
is expected that different modules serving different pur-
poses introduce mutations with different kinds of effects.
In particular, an echolocation module has no reason to
introduce synonymous mutations that are unlikely to
optimize the protein for echolocation. Rather, we should
expect an echolocation module to only modify the gene
in ways that contribute to echolocation.

6. CONCLUSIONS
We have extended the dependency graph model to amino
acid sequences. In so doing, we have offered an expla-
nation for discordant phylogenies and conflicting phy-
logenetic signals. We have shown that data that are
either randomly generated or produced by a simulated
branching process do not exhibit these conflicting signals.
However, as shown here with prestin sequences, real ge-
netic data can have such conflicting signals. The new
AminoGraph tool provides a way for users to explore
the conflicting signals and potential dependency graph

influences of amino acid sequences.

Our evidence for the correctness of our model is the
various sequences that AminoGraph detects as exhibiting
the structure expected based on a dependency graph.
This is akin to many arguments for common descent
that identify hierarchical signals in various datasets. We
are doing essentially the same thing by showing that
there is a dependency graph signal in these datasets.
In fact, as depicted in Figure 6, the dependency graph
signal is a refinement of the hierarchical signal. That
is, cases of sequences that exhibit dependency graph
signals will also exhibit a hierarchical signal. However,
almost all sequences that exhibit a hierarchical signal
would not also exhibit a dependency graph signal. Even
data that deviate from a hierarchical signal would not
tend to exhibit a dependency graph signal because the
dependency graph signal requires that a pattern of amino
acid substitutions appear in distinct groups. Finding
this pattern is a successful prediction of the dependency
graph model.

Ultimately, however, the dependency graph model
needs to match and exceed the predictive power of com-
mon descent. That includes all predictions from all fields
of biology. Roughly, the dependency graph model would
suggest that these predictions were possible using com-
mon descent only because the tree of life is an approxima-
tion to the most significant modules in the dependency
graph. As such, the dependency graph still underwrites
these predictions while also better predicting and explain-
ing homoplasies. Nevertheless, the dependency graph
is an immature model and requires more development
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D. Graph Signal

Hierarchical Signal

All Sequences

Figure 6: A Venn diagram depicting the relationship between
all amino acid sequences, amino acid sequences exhibiting a
hierarchical signal, and amino acid sequences exhibiting a depen-
dency graph signal. All sequences that exhibit dependency graph
signals will also exhibit a hierarchical signal, but not vice versa. doi:
10.5048/BIO-C.2023.1.f6

before it can be claimed as the best explanation over
common descent.

For this paper, we put forward an extension of the
dependency graph model to amino acid sequences. This
demonstrates the basic viability of this model to explain
sequence data and not merely the presence or absence
of gene families. We have shown that there is a signal
in the data consistent with a dependency graph model.
Any other model of amino acid sequences must explain
this signal. Additional research is required to evaluate
and develop this model as a full fledged alternative to
common descent.

7. APPENDIX: PROBABILISTIC MODEL
AminoGraph uses Bayesian reasoning to attempt to in-
fer a dependency graph from an amino acid alignment.
Bayes theorem applied to dependency graphs states that:

Pr[G|D] =
Pr[D|G] Pr[G]

Pr[D]
(1)

where Pr[D] is the probability of the amino acid align-
ment, Pr[G] is the prior probability of a particular depen-
dency graph, Pr[D|G] is the probability of the amino acid
given a particular dependency graph, and Pr[G|D] is the
probability of the graph given the amino acid alignment.
We wish to know that graph which has the highest proba-
bility given the supplied amino acid alignment, Pr[G|D].
By Bayes theorem, this is the graph which maximizes
Pr[D|G] Pr[G].

The graph prior Pr[G] is the prior probability of a
particular dependency graph. Let s be the number of

sequences in the alignment being investigated—this is
taken as a given. Let n ≥ s+ 1 be the number of nodes
in the graph. It is at least one node for each sequence
and the root. We assume the number of additional nodes
is drawn from a geometric distribution. Taking the prior
of the parameter of geometric distribution as uniform
between 0 and 1, we obtain:

Pr[n] =

∫ 1

0

(1− p)n−sp dp = β(n− s, 2) (2)

The extra nodes added to the root and sequence
nodes are unlabeled. This means that for every graph
containing extra n − s nodes there are (n − s)! other
graphs which are the same, except the extra nodes are
recorded in a different order. We must factor these
equivalent graphs into the probability of the graph being
studied by multiplying the prior by (n− s)!.

The root has no dependencies by definition. Each
node other than the root has at least one dependency.
We take the number of additional dependencies for each
node to be taken from a geometric distribution. Each
dependency must be to one of the inferred nodes in the
graph and not to one that represent a sequence provided
in the alignment. The probability of the specific number
of dependencies of all nodes can be expressed as:∫ 1

0

∏
i

1

n− s
(
1− p

n− s
)Pi−1p dp =

∫ 1

0
(1− p)d−n−1pn−1 dp

(n− s)d

=
β(d− n, n)

(n− s)d

where i is a non-root node in the graph, p is the param-
eter of the geometric distribution, Pi is the number of
dependencies of node i, and d is the total number of
dependency relationships in the graph.

For non-sequence nodes, we take the number of de-
pendencies to also be taken from a geometric distribution.
The prior thus comes to the following:

Pr[G] =
β(n− s, 2)(n− s)!β(d− n, n)

(n− s)d
(3)

However, this prior assigns probability to invalid
graphs, such as one containing cycles where a dependency
depends on itself. Ideally, we would compute the prob-
ability of the graph given that the graph is valid. This
may expressed as Pr[G|V ], where V means a valid graph
is generated. However, we wish to maximize the quan-

tity Pr[D|G] Pr[G|V ], which is equivalent to Pr[D|G] Pr[G]
Pr[V ]

for all valid graphs. The Pr[V ] does not depend on
G, and thus, the G that maximizes Pr[D|G] Pr[G] also
maximizes Pr[D|G] Pr[G|V ].

Two restricted subsets of possible graphs are of inter-
est: stars and trees. In a star phylogeny, there is only
one root and the sequences, and each sequence depends
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directly on the root. In a tree phylogeny, each non-root
node has one dependency. AminoGraph automatically
determines which subset a graph falls into and adjusts
the prior to be specific to that subset. There is only one
possible star phylogeny, so its prior is always one. For a
tree topology, it is impossible for a node to have extra
dependencies, so the associated probability is taken to
be 1 instead of β(d− n, n).

The likelihood Pr[D|G] is the probability of pro-
vided amino acid alignment given the dependency graph.
AminoGraph takes an amino-acid model in Paml tri-
angular format. This provides a matrix with element
Tij providing the transition rate from amino acid i to
amino acid j. It also provides a vector Ii providing the
frequency of the various amino acids, normalized to sum
to one to form a valid probability distribution.

For the root node, we use a geometric distribution
over possible lengths of the initial sequence.∫ 1

0

(1− p)lp dp = β(l + 1, 2) (4)

Additionally, we must incorporate the probability of each
amino acid in the initial sequence. Thus, the probability
of the root node is β(|s| + 1, 2)

∏
j Isj , where s is the

sequence of the root node and j is the valid indices of
that sequence.

For other nodes, we determine the inherited state of
the position: whether it be empty or a specific amino
acid. There are two additional probabilities of interest.

• pi is the probability of an insertion

• pd is the probability of a deletion

If the amino acid is present in the sequence (i.e. it
is not a gap and it is not deleted), the probability is
(1−pd)e

Tl
ij , where l is a parameter indicating the amount

of evolution expected in a node, and i is an index corre-
sponding to the inherited amino acid, and j is an index
corresponding to the amino acid actually observed. The
parameter l is optimized during the search process to
maximize the probability of the graph. The probability
of a deletion is pd. The probability of an insertion is piIj ,
where j is the amino acid inserted. Potential insertions
exist before and after each present amino-acid position
and each has a probability of (1− pi).

The probability of each node can be expressed as
follows:

pai
i (1− pi)

bipad

d (1− pd)
bdγ (5)

The as and bs are computed by counting the cases de-
scribed above, and γ is computed by looking up the
matrix T and vector I. Each pa(1 − p)b can be aggre-
gated to the graph level where we can take a uniform
prior over possible values of p.∫ 1

0

pa(1− p)b = β(a+ 1, b+ 1) (6)

Thus, the full likelihood may be computed by multiplying
the various beta functions and product of the γ across
all nodes.

In principle, it would be best to compute the
likelihood by summing over all possible assignments
of states to all non-sequence nodes. However, this is
impractical. As such, AminoGraph instead computes
the likelihood of one particular assignment of states and
seeks to identify the most probable state.
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