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Abstract

ev is an evolutionary search algorithm proposed to simulate biological evolution. As such, researchers have 
claimed that it demonstrates that a blind, unguided search is able to generate new information. However, anal-
ysis shows that any non-trivial computer search needs to exploit one or more sources of knowledge to make 
the search successful. Search algorithms mine active information from these resources, with some search algo-
rithms performing better than others. We illustrate these principles in the analysis of ev. The sources of knowl-
edge in ev include a Hamming oracle and a perceptron structure that predisposes the search towards its tar-
get. The original ev uses these resources in an evolutionary algorithm. Although the evolutionary algorithm 
finds the target, we demonstrate a simple stochastic hill climbing algorithm uses the resources more efficiently.
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INTRODUCTION
Computer algorithms can serve as powerful tools for modeling 

and studying facets of nature, including biological phenomena. As 
with all models, extrapolation from algorithm behavior to real-
world behavior requires that the algorithm be based on realistic 
operating assumptions and produce behavior characteristic of the 
system in question. Inaccuracies or hidden biases can invalidate 
an algorithm as a model of natural phenomena. Modeling the 
evolutionary process as an algorithmic search process, therefore, 
requires diligence on our part to ensure that all algorithm assump-
tions are realistic and that no undisclosed knowledge sources are 
used to ease the difficulty of our search.

Algorithms that conduct even moderately sized searches require 
external assistance to be successful. When such an algorithm pro-
duces apparently impressive results, conservation of information 
[1-3], including the No Free Lunch Theorem [4-11], dictates we 
are faced with one of two possibilities. The first is that the search 
problem under consideration is not as difficult as it first appears. At 
times, the problems solved by seemingly complex algorithms can 
appear extremely difficult whereas a closer inspection reveals the 
search is relatively simple and, from a random query or exhaus-
tive search perspective, has a larger probability of success than 
implicitly supposed. The other alternative, for difficult problems, 
is that active information has been inserted in the search program 
to increase the chances of success.1

1	 Formally, active information is defined as -log2(p/q) where p is the probability of 
success for an unassisted search and q is the probability of success for an assisted 
search. Informally, it is the amount of information added to the search that improves 
the probability of success over the baseline search.

A common source of active information is a software oracle2 
[12-14]. When the oracle is the dominant computational compo-
nent in an evolutionary search and the cost of each query is the 
same, the efficiency of a search algorithm can be measured in 
query counts. Different search algorithms extract information with 
varying efficiencies. A simple single agent algorithm that uses a 
stochastic hill climbing ratchet [13], for example, is much more ef-
ficient than an evolutionary search using the oracle available in the 
artificial life simulation AVIDA [15]. Active information can also 
be extracted from a Hamming oracle.3 The effectiveness of this 
oracle can range from that of a standard evolutionary search to a 
deterministic frequency of occurrence Hamming oracle algorithm, 
which can produce over an order of magnitude improvement [13].

This paper presents an analysis of the ev program, a search algo-
rithm that models the evolution of nucleotide binding sites [16]. The ev 
algorithm has the form of a perceptron, consisting of a single artifi-
cial neuron using a simple threshold nonlinearity. Our purpose is to 
analyze how ev’s search structure constrains performance in light 
of conservation of information theorems for search algorithms. In 
particular, we investigate the degree to which ev’s success is due 
to active information introduced into the simulation by the struc-
ture of the perceptron used to generate potential solutions and the 
Hamming oracle used to evaluate the fitness of the solution.

2	 A software oracle is a software object that answers queries posed to it. In our case, a 
software oracle is a function that takes in a configuration and returns a value denot-
ing the fitness of that configuration.

3	 A Hamming oracle uses the Hamming distance (number of bits that differ from a 
target sequence) as its fitness metric.
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ANALYSIS AND RESULTS

Information measures
We use the following information measures [1,2,13,17,18] to 

assess the performance of a search:
Endogenous information is a measure of the difficulty of a 
search and is given by 

	 (1)

where p is the probability of success for an unassisted query.
Exogenous information in a search program is given by 

	 (2)

where q is the probability of success of an assisted query un-
der the same set of constraints. 
Active information is the difference between the endogenous 
and exogenous information, denoted as4

	 (3)

Each of the three information measures has units of bits. If the 
knowledge about the space is not accurate or is otherwise mislead-
ing, the active information can be negative. 

In addition, for any search algorithm, such as ev, a resource 
constraint must be imposed. Otherwise, unlimited time and com-
puter resources would allow an exhaustive search. Let Q denote 
the query count, Qmax the maximum allowable number of queries 
before abandoning the search, and E the expectation [19]. Under 
a query count constraint, the active information per query, I⊕, is 

	 (4)

I⊕ can be estimated by averaging the active information per 
query over K trials of Qmax queries or less. For the kth trial, there 
are two possibilities. Either success is achieved with Qk ≤ Qmax   
queries, in which case the point estimate of I⊕ is IΩ ∕Qk, or if a suc-
cess is not achieved with Qmax queries, then the point estimates of 
I+ and I⊕ both have a value of zero. 

Thus, defining ςk such that ςk = 1 for a success in Qmax or fewer 
queries, and ςk = 0 and Qk = Qmax for a failure, we can estimate I⊕ 
as the average over K trials.5  That is, I⊕ ≈ ⟨I⊕⟩ where

	 (5)

This estimate, ⟨I⊕⟩, needs to be interpreted with the same cau-
tion as the average speed of an auto on a road trip. Instantaneous 
values can be significantly higher or lower than the average.

4	 The plus sign subscript on I+ represents information being added about the search.
5	 A similar active information rate was used in the dissection of AVIDA [18] using an 

instruction count rather than queries.
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query, and the estimated normalized active information per query 
is given by 

	 (6)

A similar measure6 is the active information per mean query,

	 (7)

which we can estimate by

	 (8)

where

	 (9)

Analysis of endogenous information in ev
The ev search algorithm can be viewed as an inversion of a per-

ceptron7 [21-23]. This is illustrated in Figure 1 on the next page. 
The ev simulation creates a population of 64 synthetic organisms, 
each with a genome consisting of a 256 base string (excluding 
five extra bases at the end that are not part of the genome proper), 
with the bases stored as two-bit integers: A=00, C=01, G=10 and 
T=11. There are, therefore, n = 256 nucleotides at the perceptron 
output that serve as potential binding sites8 each with Γ = 4 pos-
sible bases. In this sequence, 16 of the 256 nucleotide site loca-
tions are designated as binding sites. The ev simulation begins 
by randomly assigning these 16 binding sites within the second 
half of the genome and fixes them for the duration of a run. The 
sequence of ones (binding sites) and zeros (not a binding site) are 
shown at the bottom of Figure 1. A published example [16] uses 
the specific locations9

t = [ , , , , , , , , , , , , , ,1 10 17 26 33 43 50 60 70 76 83 92 101 109 1117 125, ] .	(10)

There is also a Γ × λ weight matrix (see Figure 1) with Γλ = 24 
elements that are represented as integers in the range of [-R, R-1] 
where R = 512.  Since 2R = 1024 = 45, five bases are needed to 
give each weight its value. There is a single bias, θ, specified by 
five bases and having the same range as the weight elements. The 
perceptron works by sequentially processing the genome in blocks 
of λ = 6 bases. As shown in Figure 1, each of the six columns are 
activated at one of four locations (A, C, G or T) in accordance to 
the nucleotide above. The weights of these activated locations are 
summed. The bias, θ, is subtracted from this sum and the result 
compared to a threshold. If positive, the location is announced as 

6	 From Jensen’s inequality [20], E
E

1 1
Q Q

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
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
 ≥ [ ] .  Thus I⊕ ≥  I

⊞
.

7	 This is a process by which we find a set of weights and bias that give us some 
desired output behavior for our perceptron.

8	 Although all 256 positions along the genome are evaluated for errors and contribute 
to an organism’s fitness, the randomly placed binding sites are restricted to the 
second half of the genome. In Figure 1 of reference 16, these correspond to bases 
126 to 261. There are other nucleotides whose identities are interpreted as weights, 
window values, or the bias in the construction of the perceptron. Five additional 
bases are used at the end to accommodate a sliding window used in ev.

9	 The target binding sites start at location 131 (zero-indexed) in the first Figure of 
reference 16. Thus, location 10 here corresponds to nucleotide 141.
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Figure 1. The perceptron structure of ev. The genome (top) has at each 
position Γ = 4 binary locations, each corresponding to A, G, C and T. The 
number one is inserted at the location corresponding to the base type, 
and the number zero is inserted at each of the three remaining locations. 
These are illustrated with white squares for ones and shaded squares for 
zeros. The genome’s binary locations present binary (0,1)-inputs to the 
perceptron (middle), illustrated by circles shaded like the squares above 
them. The strip of the genome is shifted from right to left in unit increments 
of time. At each point in time, the window of λ = 6 bases with binary inputs 
is multiplied by weights, the resulting values are added, and the bias θ is 
subtracted. The sum S is then compared to the threshold operator. If the 
final sum is positive, the output is a one; otherwise it is a zero. Finally, the 
output is compared to the target (bottom). If they are different, an error 
is tallied. The genome sequence and the target sequence of (0,1)’s is 
advanced one step, and the process is repeated for the next target bit. 
doi:10.5048/BIO-C.2010.3.f1

a binding site. Otherwise, not. This value is compared to the target 
value. The search problem is to have all of these values match 
those of the target values, e.g. those in Equation 10. After the com-
plete genome is examined, the total number of places where the 
perceptron output and the target differs is recorded. This is an ex-
clusive or (XOR) between the two bit strings, and the number of 
differences between the two is the separating Hamming distance. 
The Hamming distance tells us how well the perceptron is doing. 
If the Hamming distance is zero, there is a perfect match and we 
have found a genome that properly identifies the binding sites. 

Analysis based on ev output. There are at least two ways to 
analyze the search algorithm in ev. The accumulated error from 
the XOR in Figure 1 is the response to a Hamming oracle for a 
binary alphabet, which announces the total number of bits the tar-
get differs from the output. The Hamming oracle is a rich source 
of active information [13]. Searching only from the perspective of 
the output, the binary target can be identified with ⟨I⊕⟩ = one bit of 
active information per query.

A simple approach to demonstrate this is as follows: Query with 
an output of all ones and record the Hamming distance. Change 
the first bit to zero. If the Hamming distance is larger, the first bit 
is a one. If smaller, a zero. Repeat for all the bits. When the second 
to last bit is identified, the final bit can be identified by matching 
the Hamming distance measured first. This approach supplies one 
bit of active information per query.  There are other algorithms 
that extract information from the Hamming oracle more efficiently 
[13].

Analysis based on ev perceptron structure. The more interesting 
case for analysis involves a search using the perceptron structure 
and the organism’s genome, rather than modifying its output di-
rectly. In this case, we search for a sequence of nucleotides that 
produces a weight matrix and bias that calculates a perceptron out-
put identical to the target.

In the search for the binding sites, the target sequences are fixed 
at the beginning of the search. The weights, bias, and remaining 
genome sequence are all allowed to vary. Finding them is a form 
of the perceptron inversion problem [22]. A search space Ω con-
sists of all possible values of weights, genome sequence, and bias. 
There are 256 nucleotide bases (A, C, G, T) used for each simula-
tion of ev. There are 5 additional bases used for a boundary con-
dition for a sliding window across some of the bases. Including 
these bases, the search space is the 261 fold Cartesian product of 
the (A, C, G, T) bases. Bases are interpreted in different ways in 
the search: 

1.	As a nucleotide on the input strip at the top of Figure 1. 
There are 256 + λ − 1 = 261 nucleotides in the input strip. 

2.	As a weight in the Γλ matrix. Each weight has 10 bits 
(5 bases) of precision. 

3.	As the bias threshold θ. The bias also has 10 bits of accuracy. 

Since there are four bases, the cardinality of the search space10 is 

	 (11)

Every point in Ω generates an XOR output of 256 bits. The 
search target ΩT is the set of all points in Ω that generate the 256 
bit target sequence at the output.  

Performance analysis of the ev perceptron
We now analyze the source the active information provided by 

ev’s perceptron structure. Denote the sum entered into the thresh-
old operator in Figure 1 by S. There are 256 values of S in the 
output string. Let’s call the kth sum Sk and concatenate them into 
the vector

	 (12)

A given Sk is the sum of seven independent and identically dis-
tributed (i.i.d.) uniform discrete random variables. The random 
variables in 

�
S , though, are not independent. Each, for example, 

contains the same bias, θ, as one of the seven numbers in its sum. 
If the output bits were independent, every possible binary string 
would have the same probability as any other and the same distri-
bution of error. According to the Laplace-DeMoivre theorem [19, 
24], they would therefore be Gaussian as in Figure 2B. However, 
the normalized histogram for ev in Figure 2A is far from Gaussian 
(see below for a demonstration). If the bias is large, it can push

10 This number includes the five bases that are not searched.

Ω = = ×4 1 37 10261 157.

�
… …S S S S S Sk

T= [ ]1 2 3 256       
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Figure 2. Occurrence frequency of perceptron outputs. A: The 
normalized histogram of the errors in ev for ten million trials using an 
all ones target (red line), and ten million trials using an all zeros target 
(black line). The two histograms are nearly graphically indistinguishable. 
There are zero errors in 0.15% of the trials for both. B: The Gaussian 
distribution we expect from the Laplace-DeMoivre theorem. C: This 
curve, equal to the results in A divided by the results in B, reveals the 
degree to which the frequency of occurrence for output sequences has 
been amplified by ev’s perceptron. The range of all three plots is from 
zero to 256. The frequency of all zeros expected by a randomly chosen 
string of bits is multiplied by 1.8 x 1074 by the perceptron. The frequency 
of occurrences of exactly 16 ones is amplified by a factor of 2.8 x 1049.  
doi:10.5048/BIO-C.2010.3.f2

all of the elements in 
�
S  to be positive. Once the threshold opera-

tor is applied, all of the positive values become one. Likewise, the 
opposite polarity of the bias will push the outputs of the threshold 
to zero. Only with biases near zero will the resulting binary string 
be a nearly even mix of ones and zeros. Outcomes with a large 
number of ones and a few zeros, or few ones and many zeros, are 
therefore more probable outcomes of the perceptron.

No site a binding site. Analyzing the target sequence consisting 
of all zeros (i.e., no site is a binding site) illustrates the tendency 
for the perceptron to produce certain outputs more frequently than 
others. To see this, we ran the perceptron in Figure 1 once us-
ing uniform random sampling with no iteration and assessed the 
Hamming distance between the perceptron output bits and the tar-
get sequence of all zeros. The process was repeated using freshly 
generated random numbers. Figure 2A shows a histogram of the 
Hamming distance between randomly generated perceptron out-
puts and the target sequence for ten million such trials when the 
target sequence is all zeros. Rather than dipping to nearly zero at 
the origin, the empirical probability of success is 

	 q = 0.00155. 	 (13)

The exogenous information for an output of all zeros is there-
fore only IS = log2(q) ≈ 9 bits.11  Similar experiments were per-

11	From Jensen’s inequality [20], E log E2 p p[ ] ≤ [ ]log2 , so this estimate is biased. 
The probability of predicting the outcome of 9.3 flips of a fair coin, however, is 
given by Equation 13. The same comment applies for Equations 15 and 16. 

formed for an all ones target sequence, with nearly identical re-
sults.12 The substantial decrease in difficulty (9 bits instead of the 
expected 256 bits) is due to active information introduced by the 
perceptron structure  for an all zeros target. The reason, as we 
have shown, is that the ev perceptron is heavily predisposed for 
generating successful solutions for targets of the type shown in 
Equation 10 where a few ones are sprinkled in a sea of zeros.

A total of 261 nucleotides defines the perceptron structure in 
Figure 1, and the size of the search space is given by Equation 11. 
It follows that an astounding q|Ω | ≈ 2 × 10154 genome sequences 
produce an output of all zeros.

An upper bound on exogenous information. Despite this predis-
position, the probability of an unassisted search generating zeros 
with sparsely occurring ones, as specified for example in Equation 
10, is still very small. We have two empirical estimates of the up-
per bound on the endogenous information of the ev problem. In 
both cases we conservatively assume there is only one perceptron 
that generates an output matching a desired 16 bit target, like that 
of Equation 10.

First, from the data used to plot Figure 2A, the frequency of 
occurrence of strings with zeros with precisely 16 ones is 0.0024. 
The probability of hitting the target in Equation 10 is then p = Pr 
[hitting target] = Pr [hitting target | 16 ones] × Pr [16 ones]. There 
are 

	 (14) 

possible ways to arrange 16 ones and 240 zeros. Because there 
have been successful simulations, we know at least one of these 
can match the target sequence. Thus Pr [hitting target |16 ones] ≥ π  
and p ≥ 0.0024 × π  = 2 × 10-28. We can therefore estimate 

	 IS < 92 bits.	 (15)

Second, ev requires that all binding sites be restricted to the 
second half of the genome (positions 126 through 256), as they 
are in the target sequences. After randomly initializing 1.5 billion 
independent genomes, 187 outputs were found to have exactly 16 
ones occurring along the second half of the genome. Repeating the 
above calculations13 results in the slightly tighter bound of 

	 IS < 90 bits.	 (16)

Search algorithms using the ev perceptron. 
A search algorithm’s role is to extract active information from 

the knowledge sources. Some search procedures do this better than 
others. In the case of ev, sources of knowledge guiding the search 
include the Hamming oracle and the predisposition of the percep-
tron to generate outputs that favor the type of targets shown. We 
show here that the evolutionary algorithm originally used for ev 
performs worse than simple stochastic hill climbing.14  

Algorithm A1 (stochastic hill climbing). Stochastic hill climb-
ing can be performed at the perceptron level involving all of the

12	We found 15,234 successes in 10 million trials. For a target sequence of all ones, 
therefore, p ≃ 0.00152.

13	We recalculated using 131
16





  to reflect the smaller number of potential binding site 

positions.
14	This is also the case for AVIDA software [15]. The evolutionary search algorithm 

used in the original paper was shown to extract information from the knowledge 
sources in the program much less efficiently than other search algorithms [18].

1 256
16

1025π = ≈( )

http://dx.doi.org/10.5048/BIO-C.2010.3.f2


Volume 2010  |   Issue 3 |   Page 5

A Vivisection of ev

genome bases in ev. We initialized by choosing 261 genome bases 
at random, and then computed the error output (see Figure 1). One 
of the 261 bases was replaced at random and the error output was 
recomputed. If the error was the same or smaller, the change was 
kept. If not, the change was discarded and the process repeated.15 
Simulation of K = 10,000 separate searches16 with Qmax = 100,000 
and random initializations produced a 100% success rate. The av-
erage number of queries for success was ⟨Q⟩ = 10,601. According 
to Equation 8, the estimated normalized active information per 
mean query for algorithm A1 is therefore 

	 (17)

Algorithm A2 (evolutionary perceptron inversion of ev). The 
original ev program [16] used an evolutionary search algorithm 
for finding binding sites. The search was seeded with M = 64 ran-
domly selected organisms and, in each iteration, two adjacent bits 
from a randomly chosen nucleotide in each organism were dis-
carded, replacing them with two randomly chosen bits. (As before, 
the nucleotides are represented by two-bits.) Half of the mutated 
genomes with the highest fitness were then selected to be the par-
ents of the next generation.17

Using Qmax = 100,000 as the maximum query count per search18, 
simulation of K = 10,000 separate searches using randomly gener-
ated initializations produced 9,115 successes. The average num-
ber of queries for success was, ⟨Q⟩ = 63,568 or 993 generations. 
This compares to the single simulation result of 704 generations 
reported in the original ev paper [16]. Applying Equation 6, the 
estimated normalized active information per mean query for algo-
rithm A2 thus gives

	 (18)

Comparing with Equation 17, we see that algorithm A1 is 
roughly 700 times more efficient than A2, the evolutionary algo-
rithm used by ev.

The effect of differing mutation rates. The above results were 
obtained using a fixed mutation rate of one base change (two 
bits) per organism per generation for both A1 and A2. We further 
measured the search performance of the A2 strategy using several 
different mutation rates19. A comparison of success rate and muta-
tion rate for the A2 algorithm is shown in Figure 3. The optimal 
mutation rate for A2 was found to be roughly 1.75 mutations per 
child,20 per generation, with the 1 mutation per child rate chosen 
by Schneider being slightly less efficient, but still within the range 
of workable mutation rates.

The effect of random uniform generated binding sites in sto-
chastic hill climbing. We have shown the perceptron favors gen-

15	This algorithm is commonly denoted as (1+1)-ES [25,26].
16	All experimental results in this paper were obtained using the online ev simulation 

software available at http://www.evoinfo.org/ev.
17	The standard notation for this algorithm is (32,64)-ES [25,26].
18	10,000 populations each running for a maximum of 1,563 generations (correspond-

ing to Qmax= 64 × 1,563 ≈ 100,000 queries).
19	All tests were performed with 10,000 runs, using a population size of 64 and a query 

cutoff of 100,000 queries.
20	Fractional mutations are generated by randomizing the mutation number. To achieve 

1.75 mutations per child, each child receives at least one mutation and has a 75% 
chance of receiving an additional, second mutation.

I
I
�

Ω

≈ × −1 09 10 4.

I
I
�

Ω

≈ × −1 55 10 7.

eration of strings of output zeros peppered with occasional ones, 
or ones peppered with zeros. The target sequences generated in the 
original ev program are the former. Further experiments demon-
strated a severe performance decrease when the binding sites are 
chosen by a 50-50 coin flip. We simulated the ev search using ran-
domly generated binding sites with each site along the second half 
of the genome (positions 126 through 256) having a 50% chance 
of being marked as a binding site. We measured the performance 
using mutation rates of 1, 1.5, 2, 4 and 8 mutations per child, 
per generation, with a query cutoff of Qmax = 100,000 queries for 
10,000 runs each. The ev search was only successful for mutation 
rates of 1 and 1.5, failing to find the target in under 100,000 que-
ries for all other mutation rates. A mutation rate of 1 mutation per 
child using the random 50-50 bindings resulted in a success rate 
of only 0.05 (compared to the prior success rate of 0.91), while a 
mutation rate of 1.5 mutations per child resulted in a success rate 
of 0.0003 (compared to the prior success rate of 0.99). Changing 
the binding sites pattern to an even mix of zeros and ones therefore 
severely hampers search performance.

Figure 3.  Search success rate vs. mutation rate for algorithm A2. Re-
sults are from a population size of 64 and a query cutoff of Qmax = 100,000 
queries. doi:10.5048/BIO-C.2010.3.f3

CONCLUSIONS
The success of ev is largely due to active information intro-

duced by the Hamming oracle and from the perceptron structure. 
It is not due to the evolutionary algorithm used to perform the 
search. Indeed, other algorithms are shown to mine active infor-
mation more efficiently from the knowledge sources provided by 
ev [13]. 

Schneider [16] claims that ev demonstrates that naturally occur-
ring genetic systems gain information by evolutionary processes 
and that “information gain can occur by punctuated equilibrium”. 
Our results show that, contrary to these claims, ev does not dem-
onstrate “that biological information...can rapidly appear in ge-
netic control systems subjected to replication, mutation, and selec-
tion” [16]. We show this by demonstrating that there are at least 
five sources of active information in ev.21

1.	The perceptron structure. The perceptron structure is pre-
disposed to generating strings of ones sprinkled by zeros 
or strings of zeros sprinkled by ones. Since the binding site 
target is mostly zeros with a few ones, there is a greater 

21	Two of the sources of active information, 3 and 4, are discussed in our previous 
work [1,2,5].

http://dx.doi.org/10.5048/BIO-C.2010.3.f3
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predisposition to generate the target than if it were, for ex-
ample, a set of ones and zeros produced by the flipping of 
a fair coin. 

2.	The Hamming Oracle [13]. When some offspring are cor-
rectly announced as more fit than others [27], external 
knowledge is being applied to the search and active infor-
mation is introduced. As with the child’s game, we are be-
ing told with respect to the solution whether we are getting 
“colder” or “warmer”. 

3.	Repeated Queries. Two queries contain more information 
than one. Repeated queries can contribute active informa-
tion [1,2,5]. 

4.	Optimization by Mutation. This process discards mutations 
with low fitness and propagates those with high fitness. 
When the mutation rate is small, this process resembles 
a simple Markov birth process [27] that converges to the 
target [1,2,5]. 

5.	Degree of Mutation. As seen in Figure 3, the degree of mu-
tation for ev must be tuned to a band of workable values. 

Our analysis highlights the importance of disclosing sources of 
knowledge in computer searches when measuring the ability of 
search mechanisms to generate novel information. As far as ev 
can be viewed as a model for biological processes in nature, it 
provides little evidence for the ability of a Darwinian search to 
generate new information. Rather, it demonstrates that preexisting 
sources of information can be re-used and exploited, with vary-
ing degrees of efficiency, by a suitably designed search process, 
biased computation structure, and tuned parameter set. This con-
firms that the conservation of information principle, as manifest in 
the No Free Lunch Theorems, is “very useful, especially in light 
of some of the sometimes-outrageous claims that had been made 
of specific optimization algorithms” [4]. 
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