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Abstract

To explain life’s current level of complexity, we must first explain genetic innovation.  Recognition of this fact has gen-
erated interest in the evolutionary feasibility of complex adaptations—adaptations requiring multiple mutations, with 
all intermediates being non-adaptive.  Intuitively, one expects the waiting time for arrival and fixation of these adap-
tations to have exponential dependence on d, the number of specific base changes they require.  Counter to this ex-
pectation, Lynch and Abegg have recently concluded that in the case of selectively neutral intermediates, the waiting 
time becomes independent of d as d becomes large.  Here, I confirm the intuitive expectation by showing where the 
analysis of Lynch and Abegg erred and by developing new treatments of the two cases of complex adaptation—the 
case where intermediates are selectively maladaptive and the case where they are selectively neutral.  In particular, 
I use an explicit model of a structured bacterial population, similar to the island model of Maruyama and Kimura, to 
examine the limits on complex adaptations during the evolution of paralogous genes—genes related by duplication 
of an ancestral gene.  Although substantial functional innovation is thought to be possible within paralogous families, 
the tight limits on the value of d found here (d ≤ 2 for the maladaptive case, and d ≤ 6 for the neutral case) mean 
that the mutational jumps in this process cannot have been very large.  Whether the functional divergence commonly 
attributed to paralogs is feasible within such tight limits is far from certain, judging by various experimental attempts 
to interconvert the functions of supposed paralogs.  This study provides a mathematical framework for interpreting 
experiments of that kind, more of which will needed before the limits to functional divergence become clear.
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INTRODUCTION
Although much of the traditional work in population genetics 

has focused on how existing alleles are propagated under vari-
ous conditions, there has in recent years been a growing interest 
in the origin of the alleles themselves. Of particular interest are 
alleles that are not merely adaptive, in that they enhance fitness, 
but innovative, in that they endow their hosts with unprecedented 
capabilities. Since we now have a large and rapidly growing cata-
log of functional protein systems that seem to be fundamentally 
complex [1], there is a growing sense that innovations of this kind 
would require complex adaptations, meaning adaptations needing 
not just one specific new mutation but several, with all intermedi-
ates being non-adaptive. If so, this may present a probabilistic 
challenge to the standard evolutionary model because it would 
require fortuitous convergence of multiple rare events in order for 
a selective benefit to be realized.

Three potential routes to the fixation of complex adaptations 
have been recognized. The simplest is the de novo appearance 
in one organism of all necessary changes, which for large inno-
vations is tantamount to molecular saltation. This route has the 
advantage of avoiding non-adaptive intermediates but the disad-
vantage of requiring a very rare convergence of mutations. The 
second potential route is sequential fixation, whereby point muta-
tions become fixed successively, ultimately producing the full set 
needed for the innovation. By this route, the rate of appearance of 

each successive intermediate en route to the complex adaptation 
is boosted by allowing the prior intermediate to become fixed. But 
because these fixation events have to occur without the assistance 
of natural selection (or, in the case of maladaptive intermediates, 
even against natural selection) they are in themselves improbable 
events. The third potential route is stochastic tunneling, which 
differs from sequential fixation only in that it depends on each 
successive point mutation appearing without the prior one having 
become fixed. Here fixation occurs only after all the mutations 
needed for the innovation are in place. This route therefore ben-
efits from an absence of improbable fixation events, but it must 
instead rely on the necessary mutations appearing within much 
smaller subpopulations.

Molecular saltation seems incompatible with Darwinian evolu-
tion for the same reason all forms of saltation do—namely, the 
apparent inability of ordinary processes to accomplish extraordi-
nary changes in one step. If specific nucleotide substitutions occur 
spontaneously at an average rate of u per nucleotide site per cell, 
and a particular innovation requires d specific substitutions, then 
the rate of appearance of the innovation by molecular saltation 
(i.e., construction de novo in a single cell) is simply ud per cell. 
This means that the expected waiting time (in generations) for 
appearance and fixation of the innovation scales as u-d. But since 
u has to be a very small fraction in order for a genome to be faith-
fully replicated (the upper bound being roughly the inverse of the 
working genome length in bases), u-d becomes exceedingly large 
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even for modest values of d, resulting in exceedingly long wait-
ing times.

Because of this, sequential fixation and stochastic tunneling are 
thought to be the primary ways that complex adaptations become 
fixed. However, in view of the fact that the underlying limitation is 
an unavoidable aspect of statistics—that independent rare events 
only very rarely occur in combination—it seems certain that all 
chance-based mechanisms must encounter it. Whether or not this 
poses a serious problem for Darwinism is, of course, another mat-
ter. If simple adaptations suffice to explain nearly everything that 
needs to be explained, with feasible complex adaptations explain-
ing the rest, then there is no problem. Still, it is important to char-
acterize the limits of feasibility for complex adaptation in order to 
draw conclusions about the limits of Darwinism.

Among the many treatments of complex adaptation by sequen-
tial fixation and/or stochastic tunneling (e.g., references 2–6), one 
recently offered by Lynch and Abegg [6] is of particular interest 
because it claims that the above limitation vanishes in situations 
where the genetic intermediates en route to a complex adaptation 
are selectively neutral. For this case, they report that “regardless 
of the complexity of the adaptation, the time to establishment is 
inversely proportional to the rate at which mutations arise at single 
sites.” In other words, they find the waiting time for appearance 
and fixation of a complex adaptation requiring d base changes to 
scale as u-1 rather than the commonly assumed u-d. Because this 
should apply not only in the case of strict neutrality (which may 
seldom exist) but also in the more realistic case of approximate 
neutrality, and because it represents a striking departure from 
common probabilistic intuitions, it is important for this result to 
be examined carefully.

Indeed, a simple thought experiment seems to justify skepti-
cism with respect to it. The number of ways to specify d base 
changes in a gene that is L bases in length is:

nd in L = 3d L
d
 

 
 

 

 
 =

3d L!
d!(L d)!

 ,    (1)

which can easily exceed the number organisms that have existed 
on earth. There are, for example, some 1072 ways to make thirty 
base changes to a gene of kilobase length. For any given gene of 
this size, then, we can be certain that the vast majority of variants 
that differ at thirty base positions have never existed. And since 
existence is a prerequisite for fixation, we can be equally certain 
that the vast majority of these variants cannot have become fixed 
in any real population. Moreover, we do not have to make any 
assumptions about selective neutrality in order to draw this con-
clusion.

In what follows, I offer an analysis of the mathematical reason-
ing behind Lynch and Abegg’s treatment of the neutral-interme-
diates case, highlighting what appear to be significant errors, and 
I develop what I believe to be accurate treatments of arbitrarily 
complex adaptations in bacterial populations, both in the case of 
mildly deleterious intermediates and in the case of neutral inter-
mediates.

ANALYSIS

Assessing Lynch and Abegg’s treatment of the neutral case
Sequential fixation. Innovation by sequential fixation has to 

work against natural selection if any of the genetic intermediates 
are maladaptive, which is apt to be the case in many evolutionary 
scenarios. In such cases, sequential fixation is conceivable only 

in small populations because the efficiency of natural selection 
in large populations makes maladaptive fixation nearly impos-
sible [7]. Focusing therefore on small populations, and initially on 
the limiting case of selectively neutral intermediates, Lynch and 
Abegg calculate the mean waiting time for arrival of an allele car-
rying a particular complex adaptation that is destined to be fixed 
within a diploid population as1:
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1
,  (2)

where d is the number of specific base substitutions needed to 
produce the complex adaptation, Ne is the effective population 
size2, u is the mean rate of specific base substitution (per site per 
gamete), and φ2 is the probability that an instance of producing 
the adaptive allele will result in fixation (given by Equation 1 of 
reference 6).

When written in the above expanded form, we see that the wait-
ing time is being equated with a sum of d terms, each of these 
terms being the inverse of a rate. As explained by Lynch and 
Abegg [6], the individual rates are simply the rates of appear-
ance within the whole population (per generation) of instances 
of the successive genotypic stages that are destined to become 
fixed, given a population in which the prior stage is fixed. So, for 
example, in a case where the complex adaptation requires five 
specific base substitutions (d = 5) and the predominant genotype 
in the initial population lacks all five, there are five possible ways 
for an allele of the initial type (call it stage 0) to progress by muta-
tion to the next stage (stage 1). The first term enclosed in square 
brackets is 5u in this case, which is the per-gamete rate of ap-
pearance of stage-1 alleles in a stage-0 population. Because each 
individual allele in a population of neutral variants is expected to 
become fixed with a probability equal to the inverse of the total 
allele count [8], the rate of appearance of stage-1 alleles that are 
destined to become fixed in a diploid population of N individuals 
is equal to the total rate of appearance (2N × 5u per generation) 
divided by 2N, which equals the per-gamete rate of mutation to 
stage 1, namely 5u per generation.

When a stage-1 allele is fixed, there are now four possible 
ways for mutation to produce a stage-2 allele. The second term in 
square brackets, 4u, is again the rate of appearance of stage-2 al-
leles that are destined to become fixed within a population where 
a stage-1 allele has become fixed, and so on for the third and 
fourth terms. The final term differs because the complete complex 
adaptation (stage 5) has an enhanced fixation probability resulting 
from its selective advantage.

Since the mean wait for a stochastic event to occur is just the 
inverse of its mean rate of occurrence, the right-hand side of 
Equation 2 is now seen to be the sum of waiting times, specifi- 
cally the mean waiting times for appearance of destined-to-be-
fixed alleles at each successive stage within populations in which 
the prior stage has become fixed. The actual process of fixation 
(after a destined-to-be-fixed allele appears) is relatively fast in 
small populations, taking an average of 4Ne generations for neu-
tral alleles [8]. Assuming this to be negligible, Equation 2 may 
seem at first glance to represent precisely the intended quanti-
ty—the overall waiting time for fixation of the complete complex 
adaptation from a stage-0 starting point. But if the implications 
of this equation are as implausible as has been argued, then there 
must be a mistake in the calculation.

1 See Equation 5a of reference 6, which uses       to represent the same quantity.
2 Much of the genetic drift in real populations results from non-uniform population 

structure and dynamics.  In essence, the effective size of a real population is the size of 
an ideal population lacking these non-uniformities that has the same level of genetic 
drift. A detailed discussion of Ne is found in the results and Discussion section.

te s,
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This indeed appears to be the case. Specifically, of all the pos-
sible evolutionary paths a population can take, the analysis of 
Lynch and Abegg considers only those special paths that lead di-
rectly to the desired end—the complex adaptation. This is best 
illustrated with an example. Suppose a population carries an al-
lele that confers no selective benefit in its current state (e.g., a 
pseudogene or a gene duplicate) but which would confer a benefit 
if it were to acquire five specific nucleotide changes relative to 
that initial state, which we will again refer to as stage 0. Lynch 
and Abegg assign a waiting time of (5u)-1 for a stage-1 allele to 
become fixed in this situation, which is valid only if we can safely 
assume that the population remains at stage 0 during this wait. 
But this cannot be assumed. A stage-0 allele of kilobase length, 
for example, would have about 200-fold more correct bases than 
incorrect ones (with respect to the complex adaptation), which 
means the rate of degradation (i.e., fixation of changes that make 
the complex adaptation more remote) would be about 600-fold 

higher3 than the rate of progression to stage 1. It is therefore very 
unlikely in such a case that the population will wait at stage 0 long 
enough to reach stage 1, and the situation becomes progressively 
worse as we consider higher stages.

It is possible to adjust the problem to some extent in order to 
achieve a more favorable result. For example, if we suppose that 
all changes except the five desired ones are highly maladaptive, 
then fixation becomes restricted to changes at the five sites. But 
even under these artificial restrictions, Equation 2 is incorrect in 
that it ignores back mutations [6]. Since the aim is to acquire the 
correct bases at all d sites, and there are more incorrect possi-
bilities than correct ones at each site, counterproductive changes 
must substantially outnumber productive changes as the number 
of correct bases increases. So even in this highly favorable case, 
the analysis suffers from neglect of counterproductive competing 
paths. Productive changes cannot be ‘banked’, whereas Equation 
2 presupposes that they can.

Stochastic tunneling. Lynch and Abegg’s treatment of stochas-
tic tunneling with neutral intermediates is also problematic. To 
derive an expression for the waiting time when the population is 
large enough to preclude fixation of intermediate stages (Equation 
5b of reference 6), they approximate the frequency of stage-d al-
leles at t generations as (ut)d. While they note that this approxima-
tion is valid only if ut << 1, they overlook the fact that this restricts 
their analysis to exceedingly small values (ut)d. Specifically, they 
equate this term with the substantial allele frequency at which 
fixation becomes likely4, and then proceed to solve for t, taking 
the result to be valid for arbitrarily large values of d. This leads 
them to the unexpected conclusion that “in very large populations 
with neutral intermediates, as d→∞, the time to establishment 
converges on the reciprocal of the per-site mutation rate, becom-
ing independent of the number of mutations required for the ad-
aptation” [6]. But since they have in this way neglected the effect 
of d, it should be no surprise that they find d to have little effect.

Modeling complex adaptation in large structured 
populations

Approach. Turning now to the problem of deriving a satisfac-
tory expression for the overall time for appearance and fixation 
of an arbitrarily complex adaptation, we begin by considering 
appropriate ways to define the problem. In the first place, since 
our primary interest is to place reliable limits on what is evolu-

tionarily feasible, we will focus on the kinds of populations that 
are most apt to produce complex adaptations, by which we mean 
those providing the most opportunities for chance events to ac-
complish something of significance. In this regard, bigger popula-
tions are definitely better. Lynch and Abegg describe an advan-
tage of very small populations being that maladaptive alleles can 
become fixed by genetic drift [6]. But the ease of fixation is one 
thing, and the consequence is another. In view of the fact that mal-
adaptive mutations are much more common than adaptive ones [9, 
10], populations that are too small for purifying selection to work 
will inevitably undergo genetic degradation, which makes extinc-
tion the most likely outcome. We will therefore consider a global 
bacterial population where the effective population size may be 
on the order of 109, which is much higher than estimated sizes for 
more complex forms of life [11].

Analysis of bacterial genomes shows that many genes are sig-
nificantly similar to other genes in the same genome. These simi-
lar genes are presumed to be paralogs, meaning that they originat-
ed from a common ancestral gene by means of gene duplication 
events. Although the functional redundancy of duplicate genes 
implies that most of them will be lost, their lack of functional 
constraint also frees them to acquire mutations that may produce 
new functions [12,13]. We will therefore frame our description 
of complex adaptation around the assumption that it is initiated 
by a duplication event that provides a suitable starting gene. The 
alternative assumption, that a population carries a preexisting un-
constrained allele, will be treated as a special case.

Also, considering the interest in the role of small populations 
in the origin of complex adaptations, it will be helpful to base the 
present analysis on an explicitly structured whole population in-
stead of relying on the concept of effective population size for 
simplification. By treating small subpopulations directly, we will 
get a picture of population dynamics on multiple scales—both the 
vast scale of global bacterial populations and the much smaller 
scale of local colonies. This will enable us to examine events akin 
to fixation in small populations (i.e., establishment at the colony 
level) in order to see how likely these are to trigger global fixation.

Case 1: Complex adaptations with maladaptive intermediates. 
Seeking a mathematical description of the waiting time for ap-
pearance and fixation of arbitrarily complex adaptations in bacte-
rial populations, we begin with the following basic assumptions: 

A1– Cells reproduce asexually by binary fission;

A2– The global population is of steady size, with local prolif-
eration balanced by local extinction or near extinction;

A3– All genetic intermediates en route to the complex adapta-
tion, beginning with a new duplicate gene, confer a non-negli-
gible selective disadvantage (relative to the wild type);

A4– The global population is large enough to prevent fixation 
of these maladaptive intermediates; and 

A5– Selective benefit appears when the complex adaptation is 
complete.

Maruyama and Kimura described a mathematical model that 
captures the feast-or-famine nature of bacterial populations re-
ferred to in the second of the above assumptions, where rapid 
proliferation is balanced by frequent local extinctions [14]. The 
model to be developed here is similar in many respects to their 
island model. Specifically, we conceive of a global bacterial 
population consisting of numerous lines, each line starting with a 
single colonizing cell and proceeding through multiple rounds of 

3 Of the three possible changes to an incorrect base in this example, only one 
corrects it.

4 This being (4Ne s2)-1 where s2 is the fractional advantage conferred by the 
stage-d allele.
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binary fission until nutrient exhaustion causes line extinction. As 
each line expires, a new line is colonized with a cell chosen ran-
domly from the whole population. Lines are taken to persist for 
a fixed period of τ wild-type generations but to run their courses 
asynchronously, so that the size of the whole population remains 
nearly constant.

Because gene expression carries a metabolic cost, we expect 
duplicate genes to be maladaptive [15-18] unless their expression 
is substantially curtailed. Consistent with this, a recent study has 
found that a wide variety of mutations that reduce expression of a 
non-functional gene are rapidly fixed during extended serial cul-
ture [19]. Accordingly, in the present case we assume (A3 above) 
that all genetic intermediates en route to the complex adaptation 
are sufficiently maladaptive that natural selection prevents their 
accumulation. In the next section we consider the alternative case 
of selectively neutral intermediates.

In terms of the stage notation introduced above, the initial pop-
ulation is presumed to be at stage 0, which is taken as the wild-
type state. Duplication events that provide starting points for the 
complex adaptation of interest convert stage-0 cells into stage-1 
cells (carrying stage-1 alleles) which are now at a disadvantage 
relative to the wild type. A stage-1 cell must undergo d specific 
base changes (in any order) to be converted into a stage-(d+1) 
cell, which then benefits from the complex adaptation. Because 
each line within the population begins with a single cell, we may 
similarly describe lines in terms of the stage of their colonizing 
cell. Note that this stage notation refers not to specific alleles or 
genotypes but rather to classes of alleles and genotypes defined 
with respect to their proximity to the complex adaptation.

A synopsis of the whole process by which a complex adapta-
tion originates and becomes fixed, according to this model, would 
therefore run as follows. The initial population, consisting entire-
ly of stage-0 cells (and therefore stage-0 lines), immediately gives 
rise to mutant cells, some of these being stage-1 cells and some 
potentially being of a higher stage. But because the rate of pro-
duction of cells at any stage is proportional to the number of cells 
at the prior stage (with a very small proportionality constant), far 
fewer mutants are produced at each successive stage. The actual 
number of stage-3 cells, for example, is apt to be zero at any given 
time. Even so, there is some nonzero probability that a stage-3 cell 
will be produced within the next generation. That being the case, 
if we wait long enough a stage-3 cell is bound to appear, and in-
deed any number of appearances can be had by extending the wait 
sufficiently. Eventually, enough cells will have been produced at 
each stage for lines to be colonized by them. However, because 
lines colonized by cells at stages 1 through d grow slightly less 
well than wild-type lines, they will be unable to sustain their pres-
ence in the population through re-colonization, depending instead 
on continual regeneration by mutations. Therefore, prior to the 
first colonization by a stage-(d+1) cell, the composition of the 
whole population may be described in terms of a time-averaged 
steady state where lines nominally of stages 0 through d make up 
certain proportions of the population and cells at stages 0 through 
d+1 make up certain proportions of those lines. Because these 
proportions correspond to probabilistic expectations, they have 
meaning even if they are infinitesimally small (e.g., a genotype 
expected to make up one part in 1030 of a global population num-
bering 1020 individuals should be represented, on average, by one 
cell every 1010 generations). Finally, when stage-(d+1) cells be-
gin to colonize lines, the steady state is broken by their ability to 
mount an increasing rate of re-colonization, which leads to rapid 
fixation of the complex adaptation. The aim is to calculate when 
this transition is expected to occur.

During the steady-state period, the expected proportion of cells 
in the population at any incomplete stage j, Fj, may be expressed 
as the sum of contributions from lines colonized by cells up to 
stage j.5 Because stage-i lines (i.e., lines colonized by stage-i 
cells) are present in the same overall proportion as stage-i cells 
(namely Fi) the steady state equations are of the form:

Fj i Fi f i, j
i 0

j

  for 0 j d , (3)

 
where fi,j is the mean proportion of stage-j cells in a stage-i line (i 
≤ j), and σi is the mean size of a stage-i line divided by the mean 
size of a stage-0 line6, all of these means being the expected time-
averaged values over the line duration.

Assuming mutations are rare, the steady-state population will 
consist predominantly of stage-0 cells. Consequently, F0 in the 
first term of the above summation is very nearly 1. Similarly, fj, j 
is well approximated by 1 in the final term. With these simpli-
fying approximations, the steady state relations represented by 
Equation 3 have the following recursive solution (see Supplement 
[20] for derivation) describing the prevalence of cells at stages 1 
through d:
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where α i i iF f≡ 0,  , and σ is taken to have the same value (<1) for 
all maladaptive stages.

To calculate values for fi,j (i < j), we first develop equations de-
scribing the expected number of stage-j cells in a stage-i line, ni,j ,  
as functions of the line age, a. The expected number of stage-i 
cells in a stage-i line (i.e., the number of cells unaffected by muta-
tion since the line was colonized) is nearly equal to the size of the 
line (mutations being rare), which grows according to a simple 
doubling equation:

ni , i a 2a(1 si ) , (5)
 

where a is measured in wild-type generations (the standard time 
unit throughout these calculations), and si is the coefficient of se-
lection (i.e., fractional advantage) of stage-i cells relative to the 
wild type (si < 0 for 1 ≤ ≤i d, indicating a selective disadvantage).

Now, consider a stage-i line currently of age a. Suppose a mu-
tation that happened when the line was of age t (≤ a) converted 
a stage-i cell into a stage-(i+1) cell. That converted cell would 
have produced 2 1 1( )( )a t si− + +  descendants by the time the line age is 
a. Consequently, the total expected number of stage-(i+1) cells in 
this stage-i line has the following dependence on line age:

5 Higher stage lines may be ignored because they are much more rare than stage-j 
lines and, on top of this, would require reverse mutations in order to produce 
stage-j cells.

6 Because lines persist for a fixed time, those colonized by cells that divide more 
slowly undergo fewer divisions, resulting in fewer cells.  Note that σ 0 1≡ .
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ni, i 1 a ri 1 ni, i0

a

t 2(a t )(1 si 1 )dt ,  (6)
 

where ri+1 is the rate (per cell) at which spontaneous mutation 
converts stage-i cells into stage-(i+1) cells. Similar equations ap-
ply for cells at each subsequent stage within the same stage-i line, 
the general form of these equations being:

 (7)

for  0 1 1≤ ≤ ≤ ≤ + −i d k d i; ,

where again rj is the per cell rate at which stage-(j–1) cells are 
mutated to stage-j cells.

Values for each fi,j are calculated from Equation 7 as ratios of 
time-averaged means:

 (8)

for  0 1 1≤ ≤ + ≤ ≤ +i d i j d; ,

where again the constant τ represents the duration of a line. Equa-
tions 7 and 8, in conjunction with Equations 4, enable calculation 
of the proportion of lines in the population colonized by cells up 
to stage d, these proportions being the succession of Fi values 
calculated as F fi i i= ⋅α 0,  , with 1 ≤ i ≤ d. From these Fi values, the 
expected number of lines per wild-type generation colonized by 
stage-(d+1) cells (which carry the complete complex adaptation) 
may be calculated as:

rcol f0,d 1 Fi fi, d 1
i 1

d
 (9)

 
where � is the number of lines in the population, � τ  therefore 
being the total number of lines colonized per wild-type genera-
tion. Because this equation accounts for colonizing cells originat-
ing from stage-0 lines through stage-d lines, it covers all possible 
sources of stage-(d+1) colonizers when no stage-(d+1) lines yet exist. 
Since this is the case of interest, Equation 9 will be used to calculate 
the expected waiting time for stage-(d+1) colonization events.

But because fixation of the complex adaptation is actually the 
event of interest, we first consider the probability that a stage-
(d+1) colonization event will cause fixation of the stage-(d+1) 
genotype. This will be less than 1 because a single instance of 
colonization does not guarantee fixation. Specifically, stochastic 
simulation shows that the likelihood of fixation per stage-(d+1) 
colonization event is approximately equal to the product of the line 
duration, τ, and the fractional growth advantage conferred by the 
complex adaptation, s+, provided that τ s+ < 1 (see Supplement [20]).

So, multiplying Equation 9 by τs+ gives rfix , the expected num-
ber of successful stage-(d+1) colonization events (i.e., ones that 
will lead to fixation) per wild-type generation. Treating this as a 
Poisson process, the median waiting time for fixation (i.e., the 
time point at which fixation becomes the likely outcome7) is given 
by w rfix fix= ln2 . When the full calculation is done (see Supple-
ment [20]), the waiting time for the case of maladaptive interme-
diates, w sfix, − , is found to be well approximated by:
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ni, i+k a( ) = ri+k ni, i+k 10

a
t( ) 2(a t )(1+si+k )dt

f i, j = ni, j a( ) da
0

ni,i a( ) da
0

8 Duplicate alleles with more mutations should be progressively more rare if purify-
ing selection is the main way that they are eliminated.  The approximations used to 
arrive at Equations 4 provide Fi values that are consistent with this if s − = –10-4, but 
may not be if s − = –10-5.

where time is measured in wild-type generations, s– is the coeffi-
cient of selection (negative) conferred by incomplete stages (i.e., 
stages 1 to d), N is the total population size, ũ is the rate of rele-
vant gene duplication events (per cell), and u is the rate of specific 
base substitution events (per nucleotide site per cell; taken to have 
a single fixed value equivalent to rd+1 of Equation 7). Comparing 
the dependence of w sfix, − on d and τ as represented by Equation 
10 to the dependence observed by direct numerical solution of the 
above analytical equations (Equations 3–9) confirms that Equa-
tion 10 represents the overall behavior well, provided that the line 
duration, τ, is about five or more generations (Figure 1). The fact 
that the numerator of the term enclosed in brackets becomes zero 
when s– is zero is a limitation of the approximation, which breaks 
down as s–→0. Equation 10 provides reasonable accuracy8 only if 
the magnitude of s– is at least 10-4. We next consider the alterna-
tive case where s– is sufficiently close to zero to be of negligible 
effect, after which we will compare the expected behavior in the 
two cases.

Case 2: Complex adaptations with neutral intermediates. As 
in the prior case, duplicate alleles are here produced at a constant 
average rate in every cell. However, because they cannot in the 
present case be eliminated by purifying selection, they must be 
eliminated by deletion mutations instead. Two of the five basic 
assumptions therefore differ from the prior case, these being:

A3′– All genetic intermediates en route to the complex adapta-
tion, beginning with a new duplicate gene, are selectively neu-
tral (relative to the wild type);

A4′– Genome size is stabilized by a balance between neutral 
duplications and neutral deletions.

The prior case required a mathematical treatment of the propa-
gation of mutant alleles in lines at various stages because selection 
was presumed to be relevant at all stages. Since negative selection 
is absent in the current case, selection only becomes relevant at 

Figure 1.  Dependence of wfix,s −  on τ and d as represented by 
Equation 10 and full analytical solution.   Both wfix,s − and τ are mea-
sured in wild-type generations (the standard unit of time). Dashed curves 
were obtained by numerical solution of Equations 3 through 9.  Solid 
curves show the approximation provided by Equation 10. Curves are shown 
for s − = –0.01 (olive) and for s − = –0.001 (purple). Other parameter values 
are as listed in Table 1 for Equation 10. doi:10.5048/BIO-C.2010.4.f1

7 For the rare adaptations of interest here, the timescale for the actual selective 
sweep (following the colonization event destined to succeed in this) is negligible 
compared to the waiting time for colonization.

http://dx.doi.org/10.5048/BIO-C.2010.4.f1
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the final stage. Notice, however, that the selective advantage of 
the complex adaptation, s+, only entered Equation 10 at the point 
where the probability of fixation per colonization (τs+) was ap-
plied, indicating that positive selection has no significant effect 
on the pre-fixation steady state. We may therefore proceed in the 
current case by temporarily ignoring s+ in order to calculate the 
probability that a cell chosen randomly from the whole popula-
tion in its initial steady state carries the complex adaptation. That 
probability, once calculated, replaces the contents of the square 
brackets in Equation 9 in order for the effect of s+ on wfix to be 
accounted for as before.

Taking L to be the length in bases of the gene of interest and 
uΔ to be the mean rate at which insertion or deletion mutations 
(indels) appear in a single copy of that gene (per cell), a duplicate 
allele is expected to acquire 3uL + uΔ mutations per generation9, 
including both indels and base substitutions. Applying a Poisson 
distribution, we then have the following expression for the ex-
pected number of duplicate alleles in any single cell that have not 
acquired any mutations:

n 0 ˜ u e (3uL u )ada
0

˜ u 

3uL u
 ,  (11)

 
where the integration is over the cell’s ancestral history (genera-
tions ago) from the present to the infinite past. The result is sim-
ply the ratio of the duplication rate per cell to the total rate of 
mutation per duplicate allele per cell. Because the expected rates 
of gene duplication events and mutations in duplicate genes are 
constant over time10, pristine duplicate alleles acquire their first 
mutation at precisely the same average rate that singly mutated 
alleles acquire their second mutation, and so on. This means that  
n ni = 0 for all positive integral values of i, making the right hand 
side of Equation 11 a general expression for the expected number 
of duplicate alleles per cell carrying any particular total number 
of mutations.

Making use of that, and assuming that indels preclude progres-
sion to the complex adaptation, we calculate that a single cell is 
expected to carry the following number of duplicate alleles with 
exactly k base substitutions and no indels:

n k,0
˜ u 

3uL u
3uL

3uL u

k

.
  (12)

 
Given such an allele, and assuming k ≥ d, the probability that it 
has the d base changes required for the complex adaptation is 
calculated as the number of ways to make k – d changes without 
disturbing the d key sites, divided by the total number of ways to 
make k changes, which for k << L is well approximated by:

p(d |k )

3k d L d
k d

3k L
k

3 d k
d

L
d

1

.
  (13)

 
Multiplying Equations 12 and 13 then gives the following as the 
expected number of duplicate alleles in any single cell that carry 
exactly k mutations, d of which are those required for the complex 
adaptation and none of which are indels:

n k, d, 0
3k d ˜ u (uL)k

(3uL u )k 1

k
d

L
d

1

.  (14)

Having taken into account that indels prevent progression of 
the affected allele to the complex adaptation, we now need to ac-
count for the fact that random base changes have the same effect 
once they exceed the capacity of the encoded protein to sustain 
destabilizing amino acid substitutions (the buffering effect de-
scribed in reference 24). Taking λ to represent the limit on random 
base substitutions per duplicate allele (beyond which alleles are 
considered nonviable), we have the following for the expected 
number of duplicate alleles in any single cell that carry the com-
plex adaptation in working form:

9 The mean rate of mutation to a specific base, u, is here multiplied by three to obtain 
the total rate of base substitution per nucleotide site per cell.

10 More precisely, mutations in duplicate alleles are constant until L is reduced by 
deletions.  But since alleles cease to be of interest once deletions have occurred, 
this will not affect our calculation.

Table 1:  Nomenclature and standard parameter values
Parameter Symbol Value Used by Eqns:

Total population size N 1020 (ref. 21) 10, 16

Effective population size Ne 109 (ref. 11) 17, 18, 20

Line duration τ 43 generations* 10, 16

Specific base mutation rate u 10-9 per site per cell† 10, 16, 17, 18, 20

Gene duplication rate ũ 10-8 per gene per cell [3] 10, 16, 20

Indel rate uD 10-6 per allele per cell‡ 16, 20

Complexity of adaptation d Integer variable 10, 16, 17, 18, 20

Adaptive selection coefficient s + +0.01 10, 16, 17, 18, 20

Maladaptive selection coefficient s – -0.001 § 10, 17

Gene length L 1000 bases 16, 20

Random substitution limit λ 15 || 16, 20
* Based on Equation 19 and standard values of N and Ne.
† Based on the expected total mutation rate for bacteria with a genome size of 106 base pairs [22].
‡ Effective removal of neutral duplicates requires that uΔ≫ �u.
§ Assuming that bacteria typically express about 103 genes concurrently, and that the duplicate is expressed constitutively at a typical level.
|| With 75% of random base substitutions being non-silent (unpublished simulation) and 1.5 kcal/mol reduction in folding stability being typical for single amino acid substitu-

tions (see Figure 5 of reference 23), 15 random base changes would be expected to destabilize most proteins.
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 (15)

 
Because this will be much less than one, it may be interpreted 
as the expected mean fraction of the population that carries the 
complex adaptation prior to the onset of its fixation. We therefore 
replace the expression in square brackets in Equation 9 with the 
above expression for the purpose of calculating the waiting time 
for fixation in the neutral case, wfix,0 , resulting in the following 
final equation:

wfix, 0
2
s N

3k d ˜ u (uL)k

(3uL u )k 1

k
d

L
d

1

k d

d
1

.   (16)

RESULTS AND DISCUSSION

Comparing predicted dependence of wfix on d
Of primary interest is the question of how the timescale for 

fixation of complex adaptations scales with the number of spe-
cific base changes required. Having argued that larger populations 
are more conducive to complex adaptation than smaller ones, we 
have restricted our analyses of the two cases (maladaptive and 
neutral intermediates) to large bacterial populations. It will there-
fore be informative to compare the results with the corresponding 
results reported recently by Lynch and Abegg [6]. For the case 
of maladaptive intermediates, and assuming a preexisting stage-1 
allele (i.e., no duplication event required), their analysis gave the 
following result11 for w sfix, −:

  
 (17)

where the effective population size, Ne, may be interpreted either 
as the actual size of an ideal population or as the effective size 
of a real population (see discussion below). In the case of neutral 
intermediates, and again assuming a preexisting stage-1 allele, they 
found wfix, 0 to be approximated as (see Equation 5b of reference 6):

 (18)

Figure 2 compares the dependence of wfix on the number of base 
changes needed for the complex adaptation, both for the case of 
maladaptive intermediates (as predicted by Equations 10 and 17) 
and for the case of neutral intermediates (as predicted by Equations 
16 and 18). When four or more base changes are required for the 
complex adaptation, there is general agreement that neutral inter-
mediates greatly reduce the waiting times, as expected. Contrary to 
expectation, though, Equations 17 and 18 predict that maladaptive 
intermediates lead to more rapid fixation than neutral intermediates 
when two changes are required, and that the two cases are nearly 
equivalent when three changes are required (compare blue and 
purple lines in Figure 2). Equations 10 and 16 show the expected 
behavior, with neutral intermediates consistently causing signifi-
cant reduction of waiting times (green and olive lines in Figure 2).

n c.a.
3k d ˜ u (uL)k

(3uL u )k

k
d

L
d

1

k d

d

 .

wfix, s� �
s�

4d!Ne s+

s�

u

� 

� 
� 
� 

� 

� 
� 
� 

d

, 

wfix, 0 u 4Nes+( )1/ d[ ] 1
.

Although Equations 10 and 17 give qualitatively similar results 
for the maladaptive case, the numerical predictions differ sub-
stantially—by five orders of magnitude for adaptations requiring 
two mutation events. Interestingly, Equation 10 predicts less steep 
increases in waiting time with increasing complexity of the adap-
tation than Equation 17 does. Successive increments in d cause 
the waiting time predicted by Equation 17 to increase by a factor 
of s u d− ( ), which decreases gradually as d increases. The more 
rapid decline in steepness predicted by Equation 10 is attributable 
to the effects of population structure, as indicated by the pres-
ence of τ within the bracketed expression raised to the power d. 
An intuitive explanation for this behavior is that the structured 
model accounts not only for mutations as a source of rare alleles 
but also for colonization events, from which these alleles receive 
a significant numerical boost.

In the neutral case, the solution of Lynch and Abegg (Equation 
18) differs qualitatively from the other solutions in that it pre-
dicts increasing complexity to have a rapidly diminishing effect 
on the waiting time. As discussed above, this deviates signifi-
cantly from the expected behavior. The staircase behavior pro-
duced by plotting the logarithm of wfix as predicted by Equations 
10, 16 and 17 (Figure 2), is consistent with the expectation that 
each additional base change needed to construct the complex 
adaptation multiplies the improbability of success and therefore 
the wait for success to be achieved. Because higher values of 
d provide more constructive mutation possibilities in the early 
stages en route to the complex adaptation, the staircases gradu-
ally become less steep as d increases. But Equation 18 predicts 

Figure 2. Comparison of equations describing the dependence 
of wfix on the number of base changes needed for a complex 
adaptation.  Shown are waiting times calculated according to the equa-
tions derived in this work (Equation 10 [green]; Equation 16 [olive]) and 
according to the equations from the work of Lynch and Abegg (Equa-
tion 17 [purple]; Equation 18 [blue]).  Parameter values are as listed in 
Table 1, except for the rate of gene duplication.  Because Equations 17 
and 18 assume a preexisting allele as a starting point for the complex 
adaptation, Equations 10 and 16 have been adapted to conform to the 
same assumption.  This was done by reducing the value of d by one (for 
Equations 10 and 16 only) and assigning a value of u(d+1) to �u.  For 
equation 10, the result is precisely equivalent to assuming that the popu-
lation carries a preexisting allele within which the required base chang-
es are to be made. For equation 16, the equivalence is approximate.  
doi:10.5048/BIO-C.2010.4.f2

11 This is the inverse of their rate equation (Equation 6b of reference 6) rewritten in 
terms of the current nomenclature.

http://dx.doi.org/10.5048/BIO-C.2010.4.f2
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a much more dramatic (and implausible, for the reasons stated 
above) flattening, with wfix asymptotically approaching u-1 as d 
approaches infinity.

Behe and Snoke’s earlier treatment of the neutral case shows 
the expected staircase behavior, but because they modeled the 
transient approach to the pre-fixation steady state, that behavior 
only becomes evident for fixation times in excess of about 108 
generations.12 Their assumptions about the effects of mutations 
differ substantially from the assumptions used in the current treat-
ment. Specifically, they assumed that most amino acid substitu-
tions caused by a single base change to a wild-type gene eliminate 
the function of the encoded protein [2]. Considerable care is need-
ed in evaluating the experimental evidence on this issue, because 
what is judged to be non-functional depends on how the experi-
ment was performed. Using a calibrated activity threshold where 
‘non-functional’ means having activity comparable to or lower 
than that of a non-enzyme catalyst, I found only 5% of single 
substitutions to eliminate the activity of a ribonuclease [25]. Half 
of these cases of drastic impairment are explained by the fact that 
important active-site side chains were replaced, the remaining 
half apparently being attributable to drastic structural disruption 
[25,26]. Arguably, only mutations in the latter half, amounting to 
2–3% of single substitutions, preclude evolutionary acquisition 
of new functions, since new functions typically require changes 
to the active site. But despite the different ways of accounting for 
the elimination of duplicate alleles by mutation, the fact that mu-
tations must have this effect in the neutral case yields a broadly 
consistent picture.

The role of subpopulations in fixation via maladaptive 
intermediates

A significant advantage of the structured population model 
used here is that it enables us to see how small subpopulations 
(lines) influence the process of fixing complex adaptations in 
large populations when the intermediates are maladaptive. Con-
sidering a complex adaptation requiring three specific changes to 
a duplicate allele (d = 3), Figure 3 shows the relative contribu-
tions of lines at all relevant stages to the pool of cells at all stages 
(‘pool’ here being construed probabilistically, such that the pool 
size may be << 1). Stage-i lines are seen to be the primary source 

of stage-i cells up to the last maladaptive stage (stage 3). Stage-4 
lines do not yet exist in the pre-fixation steady state, but again 
lines of the highest relevant stage, stage 3, are the primary source 
of stage-4 cells. This pattern of lines of the highest relevant stage 
being the dominant source of cells at each stage becomes more 
pronounced as the selective disadvantage of intermediate stages 
is reduced (compare panels A and B of Figure 3).

Something like sequential fixation is therefore occurring on 
a small scale even in populations large enough to preclude ac-
tual fixation of maladaptive intermediates. That is, fixation of a 
complex adaptation only becomes likely on a timescale where 
all intermediate stages have had an opportunity to colonize lines. 
Once this happens, the primary route to the complex adaptation is 
through lines that were colonized by cells at the successive inter-
mediate stages. Sequential colonization is therefore the dominant 
route to complex adaptations when selection precludes sequential 
fixation. Both routes depend on the proliferation of cells at each 
stage in order for the next stage to be reached, the difference being 
that colonization is local proliferation, whereas fixation is global.

Limitations of Ne for describing real populations
The complexity of real global populations means that math-

ematical descriptions of them must always rely on simplification. 
Although the island model used in this work is itself highly sim-
plified, it does explicitly represent an important aspect of real 
bacterial populations that most analyses only represent implic-
itly—namely, the highly non-uniform descendant distribution that 
comes with a “boom and bust” mode of procreation. The fact that 
bacteria flourish wherever they can means that local prolifera-
tion is a common occurrence, which means that local extinctions 
or near-extinctions must likewise be common occurrences.13 An 
ideal population, in which half of the cells in each generation are 
randomly chosen to undergo binary fission, would also produce a 
wide distribution of progeny, but not the extreme non-uniformity 
of real populations.

Still, because the ideal model is a simpler basis for calcula-
tion, a common compromise between simplicity and realism is to 
perform calculations for an ideal population with the aim of cor-
recting the discrepancy by estimating an effective population size, 
meaning the size of an ideal population that should behave (with 
respect to the parameter of interest) like the real one. Equation 16 
illustrates how this can work. Because τ and N appear together 
outside the bracketed expression, it is possible to define Ne as a 
function of τ and N such that wfix,0 may be expressed in terms of 
Ne without explicit dependence on τ. In fact, when the method of 
Maruyama and Kimura [14] is used to calculate Ne directly from 
the population model used here, we find it to be well approxi-
mated by (see Supplement [20]):

 (19)

which means Equation 16 can be rewritten as:

 (20)

Since Equation 20 shows no explicit dependence on τ, it gives the 
same result for all combinations of τ and N that correspond to the 
same value of Ne. Notice that this includes the ideal population, 
where τ = 1 and N = Ne.
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wfix, 0
2

s+Ne

3k d ˜ u (uL)k

(3uL + u )k +1

k
d
 

 
 

 

 
 
L
d
 

 
 

 

 
 

1 

 
 
 

 

 
 
 k= d

d + 
 
 

  

 
 
 

  

1

.

Figure 3. Relative contribution of lines up to stage d = 3 to the 
pool of cells up to stage 4 in Case 1.  Concentric pie charts show 
the relative contributions of lines at stage 0 (blue), stage 1 (green), 
stage 2 (orange), and stage 3 (pink) to the whole pool of cells in the 
population at stage 1 (center circle) through stage 4 (outer ring), the pool 
size being <1 at higher stages.  A) Assuming s– =  –0.01.  B) Assuming 
s– = –0.001. Other parameter values are as listed in Table 1 for Equation 10. 
doi:10.5048/BIO-C.2010.4.f3

13 For every cell from some past generation that has billions of surviving descendants, 
billions from that generation have no descendants.

12 See Figure 6 of reference 2 and the accompanying discussion.  The staircases ap-
pear as slides in that plot because it represents the number of required changes as a 
continuous variable, whereas it is actually discrete.

http://dx.doi.org/10.5048/BIO-C.2010.4.f3
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But it is not always possible to obtain a general expression in 
this way. Notice that replacing N in Equation 10 with Ne (accord-
ing to Equation 19) does not eliminate τ, indicating that the island 
model is not reducible to the ideal model when it comes to calculat-
ing waiting times in the case of maladaptive intermediates. In fact, 
the bracketed expression in Equation 10 combines s– and τ in a way 
that altogether prevents factoring τ out. The implication of this is 
that the effect of purifying selection on complex adaptation is intrin-
sically dependent on the structure of the population, which means 
that real populations cannot be reduced to ideal ones in this case.

Limitations on complex adaptation
Returning now to the subject of evolutionary innovation, we 

consider the implications of the analyses presented here for the 
emergence of new protein functions. In particular, to what extent 
might complex adaptations have contributed to functional innova-
tions within paralogous protein families? As shown here, the answer 
depends in part on the metabolic cost of duplicate genes. Figure 4 
provides a direct comparison of the two cases examined. In the 
case where the cost of the duplicate gene was high enough to have 
a selective effect, Equation 10 shows that complex adaptations 
within families would have been restricted to about two specific 
base changes. In the alternative case, where the metabolic cost 
was insignificant, Equation 16 (or 20) shows that complex adapta-
tions requiring up to six base changes would have been feasible.

The difference between these restrictions would have been im-
portant in the history of life whenever six changes could have pro-
duced an innovation that two changes could not have. Presumably 
some of these innovations happened and some did not, depending 
on the costs involved. Be that as it may, the most significant im-
plication comes not from how the two cases contrast but rather 
how they cohere—both showing severe limitations to complex 
adaptation. To appreciate this, consider the tremendous number 
of cells needed to achieve adaptations of such limited complexity. 
As a basis for calculation, we have assumed a bacterial popula-
tion that maintained an effective size of 109 individuals through 
103 generations each year for billions of years. This amounts to 
well over a billion trillion opportunities (in the form of individu-
als whose lines were not destined to expire imminently) for evo-
lutionary experimentation. Yet what these enormous resources 
are expected to have accomplished, in terms of combined base 
changes, can be counted on the fingers.

This striking disparity between the scale of the accomplishment 
and the scale of the resources needed to achieve it suggests an 
important corollary having to do with reasonable adjustments to 
the model or to parameter values. Specifically, since the predicted 
scale of complex adaptation is so small even when vast resources 
are allowed, it follows that this scale will be quite insensitive to 
adjustments. A thousand-fold increase in N or Ne, for example, 
would merely shift the staircase plots of Figure 4 down three units 
on the logarithmic scale, adding at most one base change to the 
limit. Increasing u helps by decreasing the steepness of the stair-
cases, but even an implausibly generous adjustment leaves us with 
only a modest boost in the complexity of an attainable adaptation. 
Similarly, while it is easy to think of ways that the model could be 
made more realistic (e.g., by letting τ, s+, or s– vary to represent 
environmental variation, or by letting any of the mutation rates 
vary to represent the stress response, or by including homologous 
recombination or horizontal gene transfer), it is not apparent that 
any of these added complications would remove what appears to 
be a fundamental probabilistic limitation. In the end, the conclu-
sion that complex adaptations cannot be very complex without 
running into feasibility problems appears to be robust.

Finally, this raises the question of whether these limits to com-
plex adaptation present a challenge to the Darwinian explanation 
of protein origins. The problem of explaining completely new 
protein structures—new folds—is so acute that it can be framed 
with a very simple mathematical analysis [1]. Greater mathemati-
cal precision is needed when we consider the small-scale problem 
of functional diversification among proteins sharing a common 
fold. All such proteins are thought to have diverged through spe-
ciation and/or gene duplication events. In many cases, however, 
attempts to demonstrate the corresponding functional transitions 
in the laboratory require more than six base changes to achieve 
even weak conversions (see, for example, references 28–30). Al-
though studies of this kind tend to be interpreted as supporting 
the Darwinian paradigm, the present study indicates otherwise, 
underscoring the importance of combining careful measurements 
with the appropriate population models.

Figure 4. Dependence of waiting time on d and s –.  Shown are 
waiting times calculated by Equation 10 with s – = –0.01 (purple), s – = 
–0.001 (olive), and s – = –0.0001 (green), and by Equation 16 or 20 
(blue) which assume s – ≈ 0.  Other parameter values are as listed in 
Table 1 for the respective equations.  The dashed line marks the bound-
ary between feasible waiting times (below line) and waiting times that 
exceed the age of life on earth (above line), assuming 103 generations 
per year [27].  Notice that the predicted behavior for the neutral case 
(blue) is fully consistent with the trend seen in the non-neutral case, even 
though the two cases called for very different mathematical treatments.  
doi:10.5048/BIO-C.2010.4.f4
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