
Volume 2011 | Issue 3 | Page 1

Research Article

A Stylus-Generated Artificial Genome with Analogy
to Minimal Bacterial Genomes
Douglas D. Axe*, Philip Lu, and Stephanie Flatau
Biologic Institute, Redmond, WA, USA

Abstract
The difficulty of explaining evolutionary innovation on a scale that would account for the functional diversity of life and its
components continues to dog evolutionary theory. Experiments are shedding light on this, but the complexity of the subject
calls for other approaches as well. In particular, computational models that capture some aspects of simple life may provide
useful proving grounds for ideas about how evolution can or cannot work. The challenge is to find a model ‘world’ simple
enough for rapid simulation but not so simple that the real thing of interest has been lost. That challenge is best met with
a model world in which real-world problems can be solved, as otherwise the connection with real innovation would be in
doubt. Stylus is a previously described model that meets this criterion by being based on one of the most powerful real-world
problem-solving tools: written language. Stylus uses a genetic code to translate gene-like sequences into vector sequences
that, when processed according to simple geometric rules, form patterns resembling penned strokes. These translation prod-
ucts, called vector proteins, are functionless unless they form legible Chinese characters, in which case they serve the real
function of writing. This coupling of artificial genetic causation to the real world of language makes evolutionary experimen-
tation possible in a context where innovation can have a richness of variety and a depth of causal complexity that at least
hints at what is needed to explain the complexity of bacterial proteomes. In order for this possibility to be realized, we here
provide a complete Stylus genome as an experimental starting point. To construct it we first wrote a concise description of
the Stylus algorithm in Chinese. Using that as a proteome specification, we then constructed the Stylus genes to encode it.
In this way the Stylus proteome specifies how its encoding genome is decoded, making it analogous to the gene-expression
machinery of bacteria. The complete 70,701 base Stylus genome encodes 223 vector proteins with 112 distinct vector domain
types, making it more compact than the smallest bacterial genome but with comparable proteomic complexity for its size.

Cite as: Axe DD, Lu P, Flatau S (2011) A Stylus-generated artificial genome with analogy to minimal bacterial genomes. BIO-Complexity 2011(3): 1-15.
doi:10.5048/BIO-C.2011.3

Editor: Jed Macosko

Received: May 26, 2011; Accepted: September 29, 2011; Published: October 24, 2011

Copyright: © 2011 Axe, Lu, Flatau. This open-access article is published under the terms of the Creative Commons Attribution License, which permits free
distribution and reuse in derivative works provided the original author(s) and source are credited.

Notes: A Critique of this paper, when available, will be assigned doi:10.5048/BIO-C.2011.3.c.

* Email: daxe@biologicinstitute.org

INTRODUCTION
The study of molecular evolution is complicated in some

respects by the complexity of genetically encoded proteins and
their functions. In particular, the length of a typical biological
protein chain makes it but one of an extraordinarily large num-
ber of possible chains that differ in their amino acid sequences.
The fact that no real process can sample anything but a minus-
cule fraction of these sequence possibilities means that many
topics of fundamental importance, such as the structure of fit-
ness landscapes or the sparseness of function in protein sequence
space, must be explored through inferences from a relatively
small set of observations. Consequently, any tool that facilitates
the making, testing, and refining of such inferences should be
seen as a welcome addition to the available modes of inquiry.

Computational models have long been considered important
in this respect because they enable quantitative sampling on a
scale that may, in some cases, exceed what can be achieved exper-

imentally. For such studies to be relevant to biology, however,
the model they implement must represent one or more aspects
of life correctly. This intuitive principle can be expressed more
rigorously in terms of classes. Specifically, any model system
that shares a particular property with living systems becomes a
co-member (with the living systems) of the class of all systems
having that property. Such models are important from the per-
spective of theoretical biology because whatever we reason to be
true of a class must be true of all its members, and (conversely)
whatever is shown not to be true of a member is shown not to
be generally true of the class. Consequently, models designed in
such a way that they must be classified with life in important
respects are necessarily of interest to the theoretician, whose aim
is to understand generalities rather than particulars—not what
this particular thing does per se, but rather why things like it
must behave like it in certain respects.

http://dx.doi.org/10.5048/BIO-C.2011.3
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5048/BIO-C.2011.3.c

Volume 2011 | Issue 3 | Page 2

A Stylus-Generated Artificial Genome

Stylus is a model of that kind that has been fully implemented
with open-source software1 [1]. The motivation for Stylus was
the recognition that prior models used to study evolutionary
innovation did not adequately represent the complex causal
connection between genotypes and phenotypes. Although very
little is known about this connection as it applies to anatomical
features in complex organisms, a great deal more is understood
if we narrow the focus to molecular features in simple organ-
isms. Specifically, we know how genes encode protein chains
in bacteria, and we have at least a conceptual understanding of
how these chains fold to form functional proteins and protein
complexes. With many thousands of published bacterial pro-
tein structures, we also have a reasonably good picture of both
the variety of fundamentally different protein forms in simple
life and the relationship between these forms and their biologi-
cal functions. What we lack is the combination of understand-
ing and computing power that would enable accurate general
prediction either of protein structures from their sequences or
of protein functions from their structures. Stylus in no way fills
these gaps, but rather it provides an artificial world in which
they are absent, and in which the causal connection between
gene sequences and their functions is analogous in many
respects to the real connection. That analogy, in combination
with the computational tractability of the Stylus world, makes it
possible to tackle the analogs of important questions that can-
not easily be tackled in the laboratory.

For the sake of clarity and simplicity, we have borrowed
the vocabulary of biology to describe aspects of the artificial
Stylus world that correspond to aspects of the real world. The
advantage of this is that we avoid the communication chal-
lenges that a completely new vocabulary would bring, but we
acknowledge some disadvantages as well. One of these is the
possibility of what might be called ‘world confusion.’ That is,
comments made about the Stylus world might, if removed from
their intended context, be misconstrued as comments about
biology. Another is that identity of terms might be interpreted
as a presumption of genuine equivalence between the things to
which these terms are applied. We intend to avoid confusion in
both respects, but we recognize that some care will be needed
to ensure this. To be clear, the Stylus world we describe in this
paper is entirely non-biological. It has been constructed in a
way that captures some of the basic concepts of molecular biol-
ogy, but it makes no use of biological data of any kind.

Because Stylus is substantially unlike other models, we will
reiterate many of its key aspects in this paper. One of these is its
use of a genetic code. Briefly, Stylus uses gene-like sequences of
the four letters associated with DNA (A, C, G, and T) to encode
graphical constructs that are built by connecting vectors end-
to-end to form complex two-dimensional paths. The encoding
scheme used for this is deliberately analogous to the real genetic
code. That is, of the 64 possible ‘codons’ (letter triplets), 61
map to a fixed set of twenty coplanar vectors that vary in length
and direction, with the remaining three (TAA, TAG, and TGA)
signaling chain termination. By analogy, we refer to a complete
vector path encoded in this way as a vector protein.

Vector proteins are of course very unlike real proteins in sub-
1 See https://github.com/biologic/stylus.

stance, the latter being dynamic molecular constructs while the
former are static graphical constructs. Yet Stylus endows these
graphical constructs with interesting similarities to their molec-
ular counterparts by uncovering and exploiting a pre-existing
analogy—the analogy between the set of characters used in
Chinese writing and the set of protein structures used in life [1].
Specifically, vector proteins are drawn objects that may func-
tion as legible Chinese characters if they are suitably formed.
Stylus uses a database of ideal character forms, called archetypes,
as the basis for calculating the geometric likeness of a given vec-
tor protein to a specified Chinese character. The calculation is
rapid enough (often sub-millisecond) to be performed millions
of times on a single processor core within a modest experimen-
tal timeframe, making it possible to tackle a wide variety of
interesting problems in this model world (see Figure 1). Other
models may match or surpass this computational speed, but
Stylus is unique in its use of real function that maps well to
molecular biology. It therefore represents a significant advance
in the field of evolutionary modeling.

Figure 1: Stylus as a general-purpose engine for gene scoring. At
the core of Stylus software is an algorithm that quantifies the likeness
of a given vector protein to a specified Chinese character. This numeri-
cal result, called the proficiency score, is calculated as a double-precision
floating-point number ranging in value from zero to one. Any number
of scoring cycles may be executed in one experiment, starting from an
initial gene and an initial assignment of drawn lines to character strokes.
A variety of algorithms can be used to produce each new gene sequence
after the prior one has been scored. Some of these simulate natural
selection, but other algorithms can be used as well to suit the purpose
of the experiment. As depicted, a single gene sequence can, in principle,
be evaluated with respect to any of the 20,000+ Chinese characters (pro-
vided each of its strokes can be assigned). In practice, proficient vector
proteins achieve much higher scores with respect to one character (the
one they represent well) than others. Functional specificity therefore
has a structural basis in the Stylus world, just as it does in the real world.
doi:10.5048/BIO-C.2011.3.f1

https://github.com/biologic/stylus
http://dx.doi.org/10.5048/BIO-C.2011.3.f1

Volume 2011 | Issue 3 | Page 3

A Stylus-Generated Artificial Genome

One thing Stylus does not offer, though, is minimalist sim-
plicity. Indeed, its main advantage—that it captures well some
of the messy complexity of molecular biology—might also be a
distinct disadvantage, depending on the intended application.
To help potential users of Stylus understand where it fits within
the existing assortment of evolutionary artificial-world models,
the remainder of this section compares the most prominent
alternatives.

Our discussion of the various models will be framed around the
familiar causal series that informs our understanding of proteins:

 Sequence → Structure → Function. (1)

The central importance of this series for molecular evolution
stems from the fact that it is closely coupled to another causal
series, equally familiar:

 Genotype → Phenotype. (2)

Both are simplifications (even for bacteria) but because they
represent key aspects of the real picture, they are of particular
importance for evolutionary modeling. Interestingly, despite
the apparent simplicity of Series 1 above, very few models have
the causal structure it describes (Figure 2). Many evolution-
ary models include two of the three key property categories
(sequence, structure, or function), but models representing the
full series in proper causal relation are conspicuously rare.

Figure 2: Presence or absence of Sequence → Structure → Function causation in model worlds. See the main text for discussion. The lattice
example depicted (from Hirst [2]) uses two bead types, H signifying ‘hydrophobic’ (black) and P signifying ‘polar’ (white). The top two examples of
cellular automata are similarly binary, since they use the transition rules of Conway’s Game of Life [3], where pixels are either on (filled) or off (open).
Animated illustrations of these two examples are available as supplementary CDF files (Gosper glider gun, Supplement S1 [4]; Rendell Turing machine,
Supplement S2 [5]). To view these animations, install the free Wolfram CDF player (http://www.wolfram.com/cdf-player/). doi:10.5048/BIO-C.2011.3.f2

http://www.wolfram.com/cdf-player/
http://dx.doi.org/10.5048/BIO-C.2011.3.f2

Volume 2011 | Issue 3 | Page 4

A Stylus-Generated Artificial Genome

One important class of prior models is known as lattice models,
referring to the kind of structure they describe. In a lattice
world, ‘beads’ of a few different types (typically two) are joined
in sequence to form chains. The beads may occupy any of the
discrete points on a small two- or three-dimensional lattice
(Figure 2). A chain is a sequence of beads with neighbors in the
sequence constrained to occupy neighboring points on the lat-
tice, without overlaps. Of the many possible conformations for
a given chain sequence, the ‘native’ conformation would be (if
it exists) the one that is uniquely stable according to the simple
physical model used. This explicit treatment of conformational
alternatives makes lattice models particularly suitable for study-
ing protein folding, but they have also been used to study pro-
tein evolution [2, 6, 7]. However, a considerable limitation of
these models for evolutionary applications is that, unlike real
proteins, these chains have no function. That is, there are no
actual problems that lattice structures are capable of solving.
To get around this, the notion of function is simply replaced
by structural features that correlate with functionality in real
proteins, like structural stability [7] or the presence of open
clefts or pockets ([2, 6]; see Figure 2). This may be useful for
studying structural constraints as such, but it is less clear how
useful it is for studying the actual functional constraints within
which evolution must work.

Cellular automata, where fixed transition rules are applied
repeatedly to transform a grid of active pixels (‘cells’), form
another class of models that have been used to study evolu-
tion [8]. Although these models can incorporate functions, the
most easily attained functions are themselves artificial, meaning
that they are confined to the pixel worlds in which they occur.
For example, a pixel construct known as the Gosper glider gun
(Figure 2) produces a steady stream of small pixel objects called
‘gliders’ when the pixel states are updated according to the tran-
sition rules of Conway’s Game of Life [3]. Viewing those states
in succession as a movie [4] gives the impression of manufactur-
ing, in that the glider gun produces gliders with the regularity
we associate with assembly lines. But of course, there are only
two elementary events in that artificial world—a pixel going
from off to on, or the reverse—and a glider is merely a particu-
lar group of five pixels in the on state. The gliding function is
therefore a modest extension of the most elementary phenom-
ena that exist in that world, making the production of gliders
qualitatively unlike the kind of manufacturing that interests us
in the real world.

This points to a key principle for evolutionary modeling.
If the ultimate objective is to explain how life acquired such
remarkable solutions to real-world problems, then we need
to look for models that can be used to study the solution of
real-world problems. Otherwise, whatever we might learn from
models lacking this capacity, we are left to wonder what it has
to do with real-world problem solving. Interestingly, real prob-
lems—computational ones—can be solved by cellular automata
that incorporate (in structures made of active pixels) all the nec-
essary components of a computational device2 (see Rendell Tur-

2 See http://rendell-attic.org/gol/tm.htm, and supplemental animation [5].

ing machine, Figure 2). As you might expect, though, automata
that meet this condition are necessarily complex, making them
cumbersome subjects for most evolutionary studies. However
important these intricate pixel machines may be as computing
abstractions, the huge amount of real computation that would
be needed to produce and test large numbers of functional vari-
ants limits their utility for evolutionary simulation.

Explicit computational models, like Avida [9], offer a consid-
erable performance boost in this regard, but not without their
own drawbacks. Like the pixel computers in cellular worlds,
organisms in the Avida world are capable of versatile computa-
tion, but unlike their pixel counterparts, Avida organisms are
endowed with computational hardware as a given. Instead of
focusing on hardware, the Avida world focuses on sequential
instructions with the idea that these are analogous to genomes
[9]. So, sequences are connected to functions in that world, but
the structures actually needed for this connection lie outside it,
as indicated by the gap in the center column of Figure 2. Like
the previous examples, then, Avida includes only part of the
causal series represented above (Series 1).

However, Avida’s omission of structure masks what is argu-
ably an even more significant departure from the causal pat-
tern of life. Living things build the complex from the simple,
a pattern that holds from the molecular level all the way up to
the level of the whole biosphere.3 Avida inverts this pattern by
using the complex to build the simple, making it less life-like
in this important respect than the other models. The bead in a
lattice model, the pixel in a cellular model, and the vector in
Stylus are all simple in that they can be fully described in terms
of their stand-alone properties and their interactions with simi-
larly simple neighbors. The same can be said of the amino acids
used to construct proteins. All of these simple things can be
used to construct much more complex things, but they are fully
intelligible as simple things in themselves, without reference to
such complexity. Serine, for example, has its particular chemi-
cal and physical characteristics as an amino acid, none of which
necessitate or presuppose the existence of the much larger and
more complex protein molecules that incorporate it. This con-
trasts sharply with the things—instructions—that are arranged
sequentially to build Avida genomes. Since instructions for a
computing device make explicit reference to the device (by
specifying operations on read, write, and flow heads, input
and output buffers, data registers and stacks, etc.) they are only
intelligible as part of a full device specification, and they only
work if that specified device is itself provided and configured to
begin processing instructions. This makes instructions complex
things in themselves, whether or not they are put to any good
use. Consequently, because they are the fundamental building
blocks of the Avida world, that world is arguably unsuitable as
a tool for advancing our understanding of the real living world,
where the building blocks are strikingly simple.

All the difficulties notwithstanding, the full causal series
above (Series 1) has been captured in a cellular automaton,
3 The fact that some organisms eat others is not an exception to this. Owls, for

example, are not built from mice but rather from the simple molecular nutrients
liberated by digesting mice (or other animals).

Volume 2011 | Issue 3 | Page 5

A Stylus-Generated Artificial Genome

namely the ‘universal constructor’ elegantly conceived by von
Neumann [10] and impressively implemented by Pesavento
[11] (Figure 2). Like pixel-based computing devices (e.g., the
Rendell Turing machine of Figure 2), a universal constructor is
a complex pixel construct,4 but in this case one that can build
any stable pixel pattern according to instructions written on a
pixel ‘tape.’ This makes it analogous to the real machines used
in computer-aided manufacturing (CAM), in that both are
programmable manufacturing devices. In fact, the relative sim-
plicity of pixel worlds enables universal constructors in those
worlds to fully replicate themselves, a feat that is well beyond
human technology in the real world. Along with this advantage,
though, comes the common limitation of functions in artificial
worlds: Since artificial worlds can easily be constructed in a way
that greatly facilitates particular artificial functions, their relevance
to real-world problem solving will remain questionable unless they
can be used for just that—solving real problems.

With this background on evolutionary modeling, the advan-
tages of Stylus are readily apparent. It fully captures the causal
relationships of Series 1, and it does so with the real-world
function of written communication. Since language is arguably
the most powerful and versatile tool in existence for real-world
problem solving, this paves the way for evolutionary experimen-
tation in a model world where functional solutions can have a
richness of variety, a range of complexity, a depth of hierarchy,
and a practical reality reminiscent of those seen in proteomes.
In addition to these benefits, Stylus has the pedagogical advan-
tage that language, unlike biology, is familiar to everyone.

The first objective of this work, then, is to realize some of
these possibilities by constructing a Stylus text that functions
like a simple bacterial proteome. Along with this, the second is
to make Stylus more accessible to new users by making the full set
of genes encoding this proteome (a complete Stylus genome) freely
available as resources for using the Stylus world to frame and test
ideas that may advance our understanding of the real world.

APPROACH
The first of the above objectives requires us to identify an

important aspect of proteomic function in simple life that lends
itself to the linguistic analogy on which Stylus is based. In con-
sidering what this should be, we begin with the observation
that the most striking thing accomplished by all bacteria is self-
replication.

Real-world self-replication may be viewed as having two fac-
ets. One of these is self-description, which means carrying a
representation of the self that can be implemented to build a
self-replica. The other is the implementation itself—the work
of building a replica in a natural setting according to the self-
description. So far, only life exhibits both of these facets. Com-
putational models commonly exhibit the first facet, but lack

4 It as actually more complex than Figure 2 implies, in that it uses 32 pixel states
instead of the 2 used in Conway’s Game of Life.

(among other things) the real-world interface needed for the
second. The universal constructor of Figure 2, for example,
depends on an actual computer (something it most definitely
cannot construct) for its implementation. Similarly, while
robots can implement computational algorithms in the real
world, they depend on complex physical structures in order to
do this, which inevitably complicates their replication.5

Accepting that genuine self-replication is beyond the reach of
synthetic systems, we have narrowed our focus to self-descrip-
tion. The next question is, what does self-description look like
in simple life? As a starting point, we take a reasonable answer
to be that a bacterial cell’s chromosome and its gene-expression
apparatus are jointly self-descriptive. Although it is common
to think of the genome itself as being a ‘blueprint’ for the cell,
genomic sequences are descriptive only when properly decoded,
and this decoding is accomplished by the actions of many pro-
teins. In other words, the genome has to be interpreted in order
for it to serve as a description of the proteome. In the simplest
bacteria, much of the proteome is itself devoted to this task of
interpretation.

Following this pattern, we seek a Stylus genome that encodes
a special kind of text, namely, one that describes how to decode
the genome. That is, the desired genome will encode a sequence
of Chinese characters (in the form of vector proteins) that tells
a reader of Chinese how Stylus genes are translated into vec-
tor sequences, and how those sequences are processed to make
readable vector proteins. Although this approach joins all prior
ones in falling well short of self-replication, it has the consider-
able advantage of stating an actual functional requirement. The
stated self-descriptive function of the Stylus proteome provides
a real basis for judging the adequacy of any proposed proteome,
though certainly not a simple basis.

Before genes can be made accordingly, it is necessary to
make some assumptions about structural similarities within
the encoded proteome, and these will have implications for
subsequent investigations. In the first place, we assume that
genes encoding the same Chinese character at different loca-
tions in the genome should be true homologs, meaning that
they descend from a common ancestral gene through a pro-
cess of neutral evolution. Secondly, we assume that the major
structural components from which the vector proteins are com-
posed, referred to here as domains, should each have a fixed
topology throughout the proteome. In other words, the por-
tions of all vector proteins that form a domain of any particu-
lar type should trace the structural elements (strokes, discussed
under “Properties and comparisons” below) in the same direc-
tion and order. This enforces a structural likeness that accords
well with the likeness of structural domains in real proteins.

5 The current state of the art in the field of self-replicating physical machines is ex-
emplified by RepRap, an open-source project aiming to build a rapid prototyping
machine that can manufacture its own parts (http://reprap.org/wiki/Main_Page).
Current versions replicate only their plastic parts, making complete replication
dependent both on a supply of their most complex components (e.g., motors,
solenoids, and electronics) and on full assembly [12].

Volume 2011 | Issue 3 | Page 6

A Stylus-Generated Artificial Genome

RESULTS

A Stylus glossary as a genome specification
To implement the above approach, we began by summarizing

the algorithm that Stylus uses to translate gene-like sequences
into vector proteins. This was done in the form of a concise
glossary of nine key terms, which was composed in English and
then translated into Chinese (Figure 3).

The resulting Chinese text is not a vector proteome in itself,
but rather a specification for building a vector proteome by con-
structing a set of genes that encode it. For each line of Chinese

text in Figure 3, a series of Stylus genes is needed to encode
the characters (one gene per character). These gene series are
analogous to bacterial operons—suites of genes encoding a set of
proteins used for a coordinated task (e.g., the stepwise chemi-
cal conversions of a metabolic pathway). The process used to
make these Stylus genes will be described later (see Methods
Overview). First we discuss how the Stylus model needs to be
extended in order for the genetic code itself to be encoded.

Genetic code specification and gene structure
By ‘genetic code’ we mean the reliable association of codons

with amino acids that enables genes to encode proteins. Real

Figure 3: Specification for a compact self-descriptive Stylus proteome. Each of nine key terms is presented with its definition on a single line of
English text. Immediately below these are the corresponding Chinese translations (written in traditional form, as explained in reference 1) with hexa-
decimal Unicode numbers appearing below each character. Gene identifiers have the form uuuu.n, where uuuu is the Unicode number of the encoded
character and n (shown below the Unicode numbers) indicates the nth instance of that character in the genome. Colors show where some of the more
heavily used characters appear and pair them with English meanings. As discussed in the text, the bracketed portion shows (in abbreviated form) how
the genome and its encoded proteome specify the genetic code. doi:10.5048/BIO-C.2011.3.f3

http://dx.doi.org/10.5048/BIO-C.2011.3.f3

Volume 2011 | Issue 3 | Page 7

A Stylus-Generated Artificial Genome

cells depend on a set of tRNAs and their corresponding ami-
noacyl-tRNA synthetases in order to specify the genetic code.
Implementation of that code requires numerous additional
components to make the amino acids and to incorporate them
into protein chains. In the realm of language, the nine glossary
entries of Figure 3 are analogous to the functions that imple-
ment a genetic code in that they describe how the code is imple-
mented in the Stylus world. It is desirable to extend this analogy
by devising a way for the code itself to be specified genetically,
as it is in real life.

The linguistic equivalent of a set of tRNAs with their dedi-
cated synthetases would be a set of statements of like, “Codons
TGT, TGC, and TGG specify the northwestward vector of
medium length,” which would establish the desired mapping
(see Figure 4). We devised a compact way of representing this
kind of statement by using the Chinese characters for
small (小, U+5C0F), medium (中, U+4E2D), and large (大,
U+5927) to represent the three possible vector lengths. When
they are written in their normal orientations, we take these
three characters to denote northward vectors of the indicated
lengths. Then, to represent the remaining seventeen vectors we
form pseudo-characters by rotating 小, 中, or 大 to the appro-
priate angle, as shown in Figure 4B.

With these single-character representations of the twenty
vectors established, the next step is to devise a compact way of
specifying the codons that encode them. For this, we chose to
elaborate on the concept of genes in the Stylus world. Figure
5A shows how the concept of open reading frames, which mir-
rors biology precisely [1], has now been incorporated into a full
conception of genes. Conceived in this way, Stylus genes depend
on upstream sequence in order for translation to occur, as do
real bacterial genes. Analogous to the Shine-Dalgarno sequence
found on bacterial mRNAs [13, 14], Stylus genes require6 an
AGG sequence separated from the ATG start codon by twelve
bases, as depicted.
6 We speak of requirements here only with respect to the model as currently

conceived. Stylus software continues to operate on isolated open reading frames,
without upstream sequences.

For most genes, these twelve bases are merely a spacer
between the AGG and the ATG, but they serve a specific pur-
pose for the special set of genes that specify the genetic code.
Figure 5B illustrates this by depicting the operon responsible
for designating the codons that specify the northeastward vec-
tor of medium length (see Nem in Figure 4A). Here, the twelve
bases upstream of the first gene in the operon are interpreted as
a series of four codon specifications, namely: ATG, ATC, ATT,
and ATA. These combine with the functions of the three genes
in the operon to provide this meaning: ATG, ATC, ATT, and
ATA signify (特符) the Nem vector (represented by 中 rotated
clockwise by 45 degrees). Vector encoding is completely speci-
fied by twenty operons of this kind that differ only in their
third genes and in the twelve-base regions upstream of their first
genes. One additional operon is needed to specify stop codons.

Figure 4: Genetic code implementation in Stylus. A) The default mapping of codons to vectors used by Stylus, as described previously [1]. B) The
twenty vectors used to construct vector proteins, along with their standard [1] three-letter designations (left) and their character or pseudo-character
designations (right). Small, medium, and large vectors are of length e0, e1/2, and e1, as described [1]. Portions of this figure are reproduced from Figure
3 of reference 1. doi:10.5048/BIO-C.2011.3.f4

Figure 5: Using upstream sequences to specify the genetic code.
A) Expressed genes in the Stylus world carry a fifteen-base upstream
sequence, beginning with AGG. B) The structure of the operon that
assigns codons to the Nem vector (see text for full description).
doi:10.5048/BIO-C.2011.3.f5

http://dx.doi.org/10.5048/BIO-C.2011.3.f4
http://dx.doi.org/10.5048/BIO-C.2011.3.f5

Volume 2011 | Issue 3 | Page 8

A Stylus-Generated Artificial Genome

This operon works in the same way as the others, but it has
an additional gene because two characters (終止) are used to
convey the meaning terminate. Table 1 gives the gene identifiers
and the upstream sequences for all 21 code-specifying operons.

Table 1: Structure of operons specifying the genetic code

Twelve-base
upstream sequence* Gene order† Specifies

CTA,CTT,CTC,CTG 7279.02, 7B26.04, 5C0F.01 Nos

TTG,TTA,TTA,TTG 7279.03, 7B26.05, 4E2D.01 Nom

TTT,TTT,TTC,TTC 7279.04, 7B26.06, 5927.01 Nol

GTA,GTG,GTC,GTT 7279.05, 7B26.07, 4011.01 Nes

ATG,ATC,ATT,ATA 7279.06, 7B26.08, 4012.01 Nem

GCT,GCG,GCC,GCA 7279.07, 7B26.09, 4021.01 Eas

ACG,ACA,ACG,ACA 7279.08, 7B26.10, 4022.01 Eam

ACT,ACC,ACC,ACC 7279.09, 7B26.11, 4023.01 Eal

CCT,CCG,CCC,CCA 7279.10, 7B26.12, 4031.01 Ses

TCG,TCC,TCT,TCA 7279.11, 7B26.13, 4032.01 Sem

CAA,CAA,CAG,CAG 7279.12, 7B26.14, 4041.01 Sos

CAT,CAC,CAC,CAC 7279.13, 7B26.15, 4042.01 Som

TAT,TAC,TAT,TAC 7279.14, 7B26.16, 4043.01 Sol

GAT,GAA,GAC,GAG 7279.15, 7B26.17, 4051.01 Sws

AAA,AAC,AAT,AAG 7279.16, 7B26.18, 4052.01 Swm

GGT,GGG,GGA,GGC 7279.17, 7B26.19, 4061.01 Wes

AGG,AGA,AGA,AGG 7279.18, 7B26.20, 4062.01 Wem

AGC,AGT,AGT,AGT 7279.19, 7B26.21, 4063.01 Wel

CGC,CGA,CGG,CGT 7279.20, 7B26.22, 4071.01 Nws

TGG,TGT,TGC,TGT 7279.21, 7B26.23, 4072.01 Nwm

TAG,TAA,TGA,TGA 7279.22, 7B26.24, 7D42.01,
6B62.01

Ter

* Sequences shown are from the final genome.
† The complete gene order for the genome is obtained by inserting gene identifiers

from this column into Figure 3 at the brackets. Gene identifiers beginning with
40 do not correspond to actual Unicode characters, but rather to characters that
have been rotated as described.

Properties and comparisons
Proteome complexity. Table 2 summarizes a number of

key properties of the Stylus genome that was constructed (as
described below) to encode the Chinese text of Figure 3. To
highlight the analogies with real genomes, we compare this Sty-
lus genome to several of the smallest known bacterial genomes—
those of the obligate endosymbiont Candidatus Carsonella
ruddii [15], the parasite Mycoplasma genitalium [16], and the
obligate symbiont Nanoarchaeum equitans [17]. At just under
half the size of the Candidatus Carsonella genome, the Stylus
genome is smaller than any known bacterial genome. Yet the
complexity of its proteome, in terms of the number of encoded
proteins and their domain composition, is comparable to that
of the real organisms. As seen in Table 2, the Stylus proteome
has 41 more proteins than does the Candidatus Carsonella pro-
teome, and it averages more domains per protein than any of
the listed bacterial proteomes.

The distribution of protein chain lengths in the tiny pro-
teome of Candidatus Carsonella shows a marked shift toward
shorter proteins relative to the other bacterial proteomes (Fig-
ure 6). The distribution for the Stylus proteome peaks at a simi-
larly short chain length but then drops off more steeply than
any of the bacterial distributions. The largest vector protein in
the Stylus proteome consists of 422 monomer units, making it
less than one third the length of the largest protein from any of
the bacterial proteomes.

 For all proteomes the histograms of Figure 7 show that most
domain types are used only once or twice. At the other extreme,
all proteomes except that of Candidatus Carsonella have at least
one domain type that is used twenty or more times. Interest-
ingly, the Stylus proteome has many more of these high-use
domain types than do the natural proteomes—six, as compared
to one each for the proteomes of the bacteria. The proportion of
single-use domain types in the Stylus proteome is correspond-
ingly low (Table 2), having the overall effect of a flatter domain-
use histogram7 for the Stylus proteome compared to the others
(Figure 7).

Figure 8 shows the major linguistic components of all 87
characters represented by the Stylus proteome. Because these
components have functional significance in Chinese writing,
they provide a basis for dividing vector proteins into function-
ally significant domain-like regions [1]. To avoid confusion,
we apply the term domain not to the character components of
Figure 8, but only to the corresponding portions of vector pro-
teins, as shown in Figure 9.

The compositional relationships of Figure 8 provide impor-
tant design constraints for building the proteome. Briefly, each
character component consists of one or more strokes, which
are continuous penned lines that may include curves or sharp
bends. Although conventional writing technique calls for

7 Relatively speaking. Considering the logarithmic scale, all of these proteomes
show a pronounced preference for low-use domains.

Volume 2011 | Issue 3 | Page 9

A Stylus-Generated Artificial Genome

strokes to be drawn in a particular order and direction, Stylus
evaluates the functional proficiency of an encoded character
(a vector protein) by examining only the shapes and locations
of the strokes. This allows a vector chain to form a particular
character component in multiple ways (two directions for each
stroke, with n! ways to order n strokes). Consequently, to spec-
ify a vector domain type, one must specify both the linguistic
component and the order and direction in which its strokes
are traced (referred to as the threading scheme). In order for all
instances of a particular component throughout the proteome
to share substantial structural similarity (see Approach), we
have used a single threading scheme for each, resulting in 112
domain types (Table 2).

Proficiency and Fitness. As originally described [1], fitness
in the Stylus world is akin to efficiency, which is calculated by
dividing the overall functional proficiency of a genome by its
resource cost. This overall proficiency clearly should be a func-
tion of the proficiency scores of the individual genes, as calcu-
lated by Stylus, but the question of what that function should
look like is itself an interesting research topic. Given that the
overall function of any Stylus-world genome should be linguis-
tic meaning at the level of a text, it follows that genomes should
divide naturally into operon-like groups of genes that encode
sentence-level meanings [1]. One way of calculating the fitness

of a whole genome sequence that has been proposed is to clas-
sify operons (sentences) as either essential or nonessential [18],
but alternative approaches may also be useful.

To maximize the versatility of the genome described here, we
applied a generic fitness function in which all genes are treated
as equal contributors. This was done by requiring all genes to
meet the same gene-level proficiency standard. Rather than set-
ting the standard in an arbitrary way, we used the proficiency
distribution for optimized genes as a guideline for setting it (see
Methods Overview). The result is a minimum gene proficiency
of 0.51 on a scale ranging from 0 to 1 (see Figure 10). Since
Stylus reliably handles proficiency scores that are many orders of
magnitude lower than this, the 0.51 standard falls at the high
end of the useful range in logarithmic terms. It consequently
proved easier to meet that standard with some characters than
with others. One reason for this is that characters with curved
strokes are represented only approximately by the linear mono-
mers (vectors) that Stylus uses (Figure 4B). Their representa-
tion can always be improved by using more vectors (effectively
shrinking the scale of the vectors relative to the scale of the
character), but since this also increases the gene cost (measured
by the number of bases and vectors used) an optimum gene size
is reached, beyond which the cost of further gene expansion
outweighs the benefit.

Table 2: Comparison of Genome Properties

Stylus genome Candidatus Carsonella ruddii * Mycoplasma genitalium† Nanoarchaeum equitans‡

Topology Linear Circular Circular Circular

Directionality Unidirectional (ssDNA) Bidirectional (dsDNA) Bidirectional (dsDNA) Bidirectional (dsDNA)

Size 70,701 b 159,662 bp 580,076 bp 490,885 bp

% coding 95% 93% 90% 91%

Proteins encoded 223 182 475 540

Avg protein length 99 v 274 aa 369 aa 280 aa

Domain types used 112 136 (172) § 278 (463) § 228 (407) §

Uses per type 4.3 1.5 2.0 2.0

Single-use types‖ 50 (45%) 106 (78%) 195 (70%) 144 (63%)

Domains per protein 2.1 1.4 1.9 1.5

Avg domain length 55 v 195 aa 194 aa 182 aa

* See http://www.ncbi.nlm.nih.gov/genome?term=NC_008512, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=5s. Data in the bottom five
rows are statistical, based upon incomplete assignment of the genome (79% amino acid coverage, according to Superfamily database).

† See http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=search&term=NC_000908, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.
cgi?genome=mg. Data in the bottom five rows are statistical, based upon incomplete assignment of the genome (60% amino acid coverage, according to Superfamily
database).

‡ See http://www.ncbi.nlm.nih.gov/genome?term=NC_005213, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=na. Data in the bottom five
rows are statistical, based upon incomplete assignment of the genome (56% amino acid coverage, according to Superfamily database).

§ The number of domain types assigned by the Superfamily database (see links above) is given first, with a projection of the actual total number in parentheses (based on the
proportion of coding sequence that cannot yet be assigned).

‖ Percentages give the proportion of domain types that are used only once in the respective proteomes. For the bacterial proteomes, these numbers were determined by
analyzing the domain-assignment text files provided by the Superfamily database (see links above).

http://www.ncbi.nlm.nih.gov/genome?term=NC_008512
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=5s
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=search&term=NC_000908
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=mg
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=mg
http://www.ncbi.nlm.nih.gov/genome?term=NC_005213
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=na

Volume 2011 | Issue 3 | Page 10

A Stylus-Generated Artificial Genome

Figure 6: Distribution of protein chain lengths in compared proteomes. Chain length is measured in monomer units: amino acid residues for
natural proteins and vectors for Stylus proteins. Follow NCBI web links in Table 2 legend to retrieve proteome tables for the bacterial species.
doi:10.5048/BIO-C.2011.3.f6

Figure 7: Distribution of domain usage in compared proteomes. Follow the Superfamily web links in the Table 2 legend to retrieve domain
assignments for each bacterial species.
doi:10.5048/BIO-C.2011.3.f7

http://dx.doi.org/10.5048/BIO-C.2011.3.f6
http://dx.doi.org/10.5048/BIO-C.2011.3.f7

Volume 2011 | Issue 3 | Page 11

A Stylus-Generated Artificial Genome

DISCUSSION
In this paper we have actualized some of what was earlier

sketched out in concept [1] by constructing a compact Stylus
genome that encodes a vector proteome with a real function.
Like the gene-expression machinery of bacteria, the Stylus pro-
teome specifies how the genomic text is interpreted as instruc-
tions for building its encoded proteins (vector proteins in the
case of Stylus), but instead of giving this specification in the
form of physical interactions and chemical processes that actu-
ally implement it (as in life), the Stylus proteome gives it in the
form of a written description.

Because these are substantially different meanings of ‘specifi-
cation,’ we will return now to the question we started with: Of
what use are artificial-world models to people interested in under-
standing the real world? The short answer is that different mod-
els may be good for different things. One important topic we
have touched on that Stylus does not address is self-replication.
Other models, like von Neumann’s universal constructor or
Avida, provide explicit artificial versions of replication, whereas
in Stylus the ability to replicate is part of the assumed context.
What Stylus offers that no other model offers, to our knowl-
edge, is an artificial version of gene-to-protein genetic causation
that parallels the real thing. This brings a new level of reality to
model investigations of one of the most important and con-

Figure 8: Composition of characters represented in the Stylus proteome. All 87 characters represented in the Stylus proteome are shown, each
under the heading that specifies the number of components used to construct it. Characters built from multiple components (two or three) have a
colon to their right, followed by a comma-separated list of their components. Under each heading, characters are arranged in columns according to
Unicode order, with shading providing visual separation of columns. Compositions were assigned by a native reader of Chinese (P. Lu). Because most
components exist as stand-alone Chinese characters, they are identified with their own Unicode identifiers. Artificial identifiers, all beginning with 40,
were given to components without existing identifiers. Pseudo-characters were likewise given artificial identifiers. doi:10.5048/BIO-C.2011.3.f8

Figure 9: Domain composition of vector protein 5E7E.01. The charac-
ter compositions listed in Figure 8 determine how vector proteins divide
into structural domains. The two domains of 5E7E.01 are differentiated
by stroke color in a 3D rendering and an inset 2D rendering. Moves
between strokes are shown only in the 3D rendering, with vertical lift
added in order to make the path of the vector chain easier to see. Vector
domains are often formed by an unbroken stretch of chain, as seen for the
戍 (U+620D) domain depicted here (purple). Exceptions exist, though,
both in natural proteins and in vector proteins, as seen here by the pur-
ple domain interrupting the green domain. doi:10.5048/BIO-C.2011.3.f9

http://dx.doi.org/10.5048/BIO-C.2011.3.f8
http://dx.doi.org/10.5048/BIO-C.2011.3.f9

Volume 2011 | Issue 3 | Page 12

A Stylus-Generated Artificial Genome

troversial subjects in the life sciences—the origin of biological
innovations.

Figure 11 underscores the significance of this by showing the
asymmetric relationship between evolutionary causation and
genetic causation at the molecular level. Whatever the origin
of these low-level processes of genetic causation may have been,
their physical operation today depends only on the molecular
systems now implementing them. This of course makes the
study of molecular biology as we now see it entirely legitimate
and feasible as a discipline in itself, wholly uncoupled from
questions of origins. But the reverse is not at all true. Evolution-
ary causation is intrinsically tied to the relationship between
genotype and phenotype, which depends on low-level genetic
causation. It follows that evolutionary explanations of the ori-
gin of functional protein systems must subordinate themselves
to our understanding of how those systems operate. In other
words, the study of evolutionary causation cannot enjoy the
disciplinary autonomy that studies of genetic causation can.

In view of this, the contribution of Stylus is to make evolu-
tionary experimentation possible in a model world where low-
level genetic causation has the essential role that it has in the real
world. Combined with the free Stylus software, the complete

Stylus genome made freely available with this paper8 paves the
way for analogy-based studies on a wide variety of important
subjects, many of which are difficult to study by direct experi-
mentation. Among these are the evolution of new protein folds
by combining existing parts, the optimality and evolutionary
optimization of the genetic code, the significance of selective
thresholds for the origin and optimization of protein functions,
and the reliability of methods used for homology detection and
phylogenetic-tree construction.

METHODS OVERVIEW
Figure 12 summarizes the process used to construct the pair

of genes needed to encode proteome character 成 (U+6210).9
With slight variations (as noted below) the same process was
used for all genes. Briefly, steps 1 through 4 of Figure 12 were
used to generate prototype genes for each of the 87 proteome
characters. Then, in the fifth step, a single prototype was chosen
for each character in a way that maximizes the fitness of the
complete genome. Finally, the “homologs” of each prototype
that are needed to represent the complete proteomic text (Fig-
ure 3) were generated from these prototypes. Each of these steps
are described in more detail next.

The process of gene construction
Given a character archetype (i.e., an ideal geometry [1]), gene

construction begins by specifying both the order in which the
encoded vector chain forms the strokes, and the end-to-end
direction in which each stroke is formed. This joint specifica-
tion—the threading scheme—is illustrated for 成 (U+6210)
8 See Table 3 for descriptions of supplementary files and links.
9 The positions of this character in the proteome (see Figure 3) are: character 7 of

line 1, and character 18 of line 5.

Figure 10: Distribution of gene proficiencies before and after
genome optimization. The upper distribution reveals the range of
natural proficiencies of the vector proteins, some of them attaining high
scores more readily than others. Genome construction took account of
this by targeting the genes at the low-scoring end of the distribution for
proficiency enhancement. All genes were then allowed to ‘relax’ to the
genomic optimum of 0.51 (see text), which produced the narrow distri-
bution in the bottom graph. doi:10.5048/BIO-C.2011.3.f10

Figure 11: The relationship between low-level genetic causation and
evolutionary causation. Each box in a long vertical succession (abbrevi-
ated) represents the state of a bacterial species at a particular time in its
evolutionary history. The process of genetic causation (i.e., the complete
process by which genes give rise to traits, like metabolic capabilities) is
always a present reality that operates as is and may therefore be prop-
erly studied and explained as is, irrespective of the vertical succession.
The vertical succession, on the other hand, cannot be explained properly
without due consideration of genetic causation.
doi:10.5048/BIO-C.2011.3.f11

http://dx.doi.org/10.5048/BIO-C.2011.3.f10
http://dx.doi.org/10.5048/BIO-C.2011.3.f11

Volume 2011 | Issue 3 | Page 13

A Stylus-Generated Artificial Genome

in the first step of Figure 12. The algorithm used to gener-
ate threading schemes attempts to minimize the total length
of stroke connections (grey lines in step 1). That algorithm
was applied to character components, as shown in Figure 8,
with the resulting component threading schemes combined
(by visual inspection) in order to build threading schemes for
multi-component characters. In cases where none of the com-
ponents of a multi-component character appear in any other
proteome character, the algorithm was applied directly to the
whole character.

The second step, synthesis of a Stylus gene to serve as a start-
ing point for further processing with Stylus, is automated with
Inscribe, the same Flash application used for manual construc-
tion of archetypes [1]. Using the archetype and the threading
scheme as inputs, Inscribe produces a gene encoding a vector
chain that traces the archetype strokes. As seen in Figure 12, the
resulting vector protein is both large (in terms of the number of
vectors used) and highly regular in structure. Further process-
ing is needed to transform this into a structure that uses vectors
efficiently and shows the variability that is typical of biological
structures.

A simple randomization step (step 3) removes the regular-
ity, with a subsequent optimization step paring the size down
in order to maximize efficiency. Optimization was achieved by
applying both single and double mutations (including three-
base insertions and deletions) within a window that scans the
length of the gene, selecting either for increased proficiency or
for an increased ratio of proficiency to cost (in Stylus terminol-
ogy, this ratio is referred to as the ‘fitness’ of a gene). As with
real biological sequences, the vast space of sequence possibili-
ties in the Stylus world and the complexity of their mapping to
function preclude global optimization, so the product of any
optimization process is only locally optimal.

Incorporating genes into a complete genome
Figure 10 (top) shows the distribution of gene proficiencies

obtained when each prototype gene is optimized to maximize
the ratio of proficiency to cost. The mean and mode of this
distribution are both seen to be above 0.5, suggesting that a
genome with a uniform proficiency standard above 0.5 may be
achievable. With this aim, genes whose optimized prototypes
had proficiencies below 0.54 were re-optimized to maximize

Figure 12: Steps used to produce the pair of genes encoding 成 (U+6210). The vector proteins resulting from steps 2 through 6 are shown with
blue strokes and grey moves. The product of the first step is simply a scheme for tracing the strokes, depicted by connecting the stroke termini of the
archetypal form with lines representing moves. In this first graphic only, grey dots mark the beginning of each move. The threading scheme therefore
starts at the extreme lower left and proceeds through six strokes (the first two have abutting ends). The fifth step, selecting the gene prototype that
maximizes genomic fitness, is illustrated by highlighting one of the products of step 4. Costs are based on the number of bases and the total vector
length as described in Supplement 3 [18]. doi:10.5048/BIO-C.2011.3.f12

http://dx.doi.org/10.5048/BIO-C.2011.3.f12

Volume 2011 | Issue 3 | Page 14

A Stylus-Generated Artificial Genome

proficiency instead of proficiency ÷ cost. This has the effect of
allowing genes at the low end of the proficiency distribution to
be larger in order to improve their proficiencies. Multiple pro-
totypes were produced in this way for low-proficiency genes, as
shown for 成 in Figure 12 (step 4).

Taking all available prototypes into consideration, along with
their associated proficiencies and costs, one can calculate the
total cost of a genome that meets a specified proficiency stan-
dard by choosing for each proteome character the least costly
gene that meets the standard. As the standard is increased, more
costly prototypes have to be chosen for an increasing number
of genes, eventually making the cost of further increase out-
weigh the benefit. The simple genomic fitness measure we used
to perform this analysis is the ratio of the proficiency standard
to the total cost of meeting that standard. Plotting this measure
against the proficiency standard shows that the most fit genome
that can be constructed from the available gene prototypes
meets a proficiency standard of 0.51 (Figure 13).

Using this standard, we produced as many ‘homologous’
genes as needed for each character, starting with the chosen pro-
totype for that character (step 6 of Figure 12). In the process, all
genes were allowed to ‘relax’ to the proficiency standard of 0.51
by generating long mutation histories with selection applied
simply to meet this standard (irrespective of the extent to which
it was exceeded). As expected, the resulting set of genes shows a
proficiency distribution with a sharp peak just above 0.51 (Fig-
ure 10, bottom).

Finally, since the product of the above steps is a set of 223
Stylus gene files (each carrying an open reading frame and
information on the vector protein it encodes), additional steps
were needed to convert this set into a genome. First, the gene
structure shown in Figure 5A calls for fifteen bases, beginning
with AGG, upstream of each open reading frame. For 21 genes
(all encoding 特: U+7279) these upstream sequences have the
critical function of specifying the genetic code. For the rest
of the genes, the upstream sequences are arbitrary apart from
the initial AGG. Arbitrary upstream sequences were generated
stochastically (using Mathematica), as were the order of codon
specifications in the critical upstream sequences (first column
of Table 1). Next, because the processing performed with Stylus
leaves the stop codons at the end of each gene untouched, these
were stochastically reassigned from the three possibilities: TAA,
TAG, TGA. After these changes were made, a full genome
sequence was assembled and tested for unintended occurrences

(in all three reading frames) of the gene-initiation pattern:
AGG, NNN, NNN, NNN, NNN, ATG. Twelve unintended
occurrences were found, each of which was disrupted by alter-
ing the AGG pattern with a silent mutation. A final check con-
firmed that the corrected genome has precisely 223 occurrences
of the gene-initiation pattern, each at its expected location.

Gene distribution and identification
In keeping with the open-source/open-access philosophy that

has characterized the Stylus project, all gene and archetype files
are made freely available with this paper (see Table 3) under the
terms of the Creative Commons Attribution License described
on page 1. The uniqueness of digital object identifiers (DOIs)
allows sets of Stylus-world objects to be referred to unambigu-
ously in future works. Additionally, Stylus automatically assigns
universally unique identifiers (UUIDs) to all genes it produces,
as does Inscribe for both genes and archetypes. These unique
identification systems facilitate open sharing of Stylus objects on
a large scale without compromising the ability of researchers to
refer unambiguously to specific instances.

Figure 13: Dependence of genome fitness on the gene proficiency
standard. In the simple case where the genomic fitness is equal to the
proficiency of the least proficient gene divided by the total cost (genome
+ proteome; [18]), the vertical scale in this plot represents fitness (assum-
ing the least proficient gene barely meets the required standard). The
red line marks the proficiency standard that maximizes fitness.
doi:10.5048/BIO-C.2011.3.f13

http://dx.doi.org/10.5048/BIO-C.2011.3.f13

Volume 2011 | Issue 3 | Page 15

A Stylus-Generated Artificial Genome

Table 3: Supplementary Files*

Description File name Size doi link

Gosper glider gun animation† glider_gun.cdf 66 K doi:10.5048/BIO-C.2011.3.s1

Rendell Turing machine animation† Rendell_Turing.cdf 19.4 M doi:10.5048/BIO-C.2011.3.s2

Reference 1 supplement (for genomic fitness model) Stylus-scoring-algorithm.pdf 1.6 M doi:10.5048/BIO-C.2011.3.s3

Stylus gene files (XML) for all 223 ORFs in ZIP archive Stylus-gene-files.zip 885 K doi:10.5048/BIO-C.2011.3.s4

Stylus proteome archetype files (XML) in ZIP archive‡ Stylus-proteome-archetypes.zip 160 K doi:10.5048/BIO-C.2011.3.s5

Complete Stylus genome sequence as FASTA file full-Genome.fasta 74 K doi:10.5048/BIO-C.2011.3.s6

FASTA files for all 223 full-length genes in ZIP archive full-gene-FASTA-files.zip 94 K doi:10.5048/BIO-C.2011.3.s7

FASTA files for all 223 ORFs in ZIP archive orf-FASTA-files.zip 86 K doi:10.5048/BIO-C.2011.3.s8

Ordered list of gene identifiers, grouped by operon§ gene-identifiers-by-operon.txt 8 K doi:10.5048/BIO-C.2011.3.s9

Composition of proteome characters‖ proteome-character-composition.txt 4 K doi:10.5048/BIO-C.2011.3.s10

* Distributed under the terms of the Creative Commons Attribution License, as described on page 1.
† Requires the free Wolfram CDF player (http://www.wolfram.com/cdf-player/).
‡ One archetype file is provided for each of the 87 proteome characters. See reference 1 for information on archetypes.
§ Operon groupings correspond to lines of text in Figure 3.
‖ The file has one line for each of the 87 proteome characters, each line giving the Unicode identifier for the character followed by a list of one or more identifiers specifying

its components, as in Figure 8.

10. von Neumann J (1966) Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana.

11. Pesavento U (1995) An implementation of von Neumann’s self-repro-
ducing machine. Artif Life 2:337-354. doi:10.1162/artl.1995.2.4.337

12. Sells EA (2009) Towards a self-manufacturing rapid prototyping
machine. PhD Thesis. University of Bath, UK. http://opus.bath.
ac.uk/20452/

13. Shine J, Dalgarno L (1975) Determinant of cistron specificity in
bacterial ribosomes. Nature 254:34-38. doi:10.1038/254034a0

14. Ma J, Campbell A, Karlin S (2002) Correlations between Shine-
Dalgarno sequences and gene features such as predicted expres-
sion levels and operon structures. J Bacteriol 184:5733-5745.
doi:10.1128/JB.184.20.5733-5745.2002

15. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, et al.
(2006) The 160-kilobase genome of the bacterial endosymbiont
Carsonella. Science 314:267. doi:10.1126/science.1134196

16. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, et al.
(1995) The minimal gene complement of Mycoplasma genitalium.
Science 270:397-403. doi:10.1126/science.270.5235.397

17. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, et al.
(2003) The genome of Nanoarchaeum equitans: Insights into early
archaeal evolution and derived parasitism. Proc Natl Acad Sci
USA 100:12984-12988. doi:10.1073/pnas.1735403100

18. Supplement to this paper (S3; doi:10.5048/BIO-C.2011.3.s3). First
published as a supplement to the original Stylus paper (see refer-
ence 1 above).

1. Axe DD, Dixon BW, Lu P (2008) Stylus: A system for evolution-
ary experimentation based on a protein/proteome model with
non-arbitrary functional constraints. PLoS ONE 3(6):e2246.
doi:10.1371/journal.pone.0002246

2. Hirst JD (1999) The evolutionary landscape of functional model
proteins. Protein Eng 9:721-726. doi:10.1093/protein/12.9.721

3. Weisstein EW “Game of Life.” From MathWorld—A Wolfram
web resource. http://mathworld.wolfram.com/GameofLife.html

4. Supplement to this paper (S1; doi:10.5048/BIO-C.2011.3.s1).
Requires the free Wolfram CDF player (http://www.wolfram.com/
cdf-player/).

5. Supplement to this paper (S2; doi:10.5048/BIO-C.2011.3.s2). File size:
19.4 Mb. Requires the free Wolfram CDF player (http://www.
wolfram.com/cdf-player/).

6. Blackburne BP, Hirst JD (2005) Population dynamic simula-
tions of functional model proteins. J Chem Phys 123:154907.
doi:10.1063/1.2056545

7. Zeldovich KB, Chen P, Shakhnovich BE, Shakhnovich EI (2007)
A first-principles model of early evolution: Emergence of gene
families, species, and preferred protein folds. PLoS Comput Biol
3:e139. doi:10.1371/journal.pcbi.0030139

8. Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular
automata to perform computations: Mechanisms and impedi-
ments. Physica D 75:361-391. doi:10.1016/0167-2789(94)90293-3

9. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evo-
lutionary origin of complex features. Nature 423:139-144.
doi:10.1038/nature01568

http://dx.doi.org/10.5048/BIO-C.2011.3.s1
http://dx.doi.org/10.5048/BIO-C.2011.3.s2
http://dx.doi.org/10.5048/BIO-C.2011.3.s3
http://dx.doi.org/10.5048/BIO-C.2011.3.s4
http://dx.doi.org/10.5048/BIO-C.2011.3.s5
http://dx.doi.org/10.5048/BIO-C.2011.3.s6
http://dx.doi.org/10.5048/BIO-C.2011.3.s7
http://dx.doi.org/10.5048/BIO-C.2011.3.s8
http://dx.doi.org/10.5048/BIO-C.2011.3.s9
http://dx.doi.org/10.5048/BIO-C.2011.3.s10
http://www.wolfram.com/cdf-player/
http://dx.doi.org/10.1162/artl.1995.2.4.337
http://opus.bath.ac.uk/20452/
http://opus.bath.ac.uk/20452/
http://dx.doi.org/10.1038/254034a0
http://dx.doi.org/10.1128/JB.184.20.5733-5745.2002
http://dx.doi.org/10.1126/science.1134196
http://dx.doi.org/10.1126/science.270.5235.397
http://dx.doi.org/10.1073/pnas.1735403100
http://dx.doi.org/10.5048/BIO-C.2011.3.s3
http://dx.doi.org/10.1371/journal.pone.0002246
http://dx.doi.org/10.1093/protein/12.9.721
http://mathworld.wolfram.com/GameofLife.html
http://dx.doi.org/10.5048/BIO-C.2011.3.s1
http://www.wolfram.com/cdf-player/
http://www.wolfram.com/cdf-player/
http://dx.doi.org/10.5048/BIO-C.2011.3.s2
http://www.wolfram.com/cdf-player/
http://www.wolfram.com/cdf-player/
http://dx.doi.org/10.1063/1.2056545
http://dx.doi.org/10.1371/journal.pcbi.0030139
http://dx.doi.org/10.1016/0167-2789(94)90293-3
http://dx.doi.org/10.1038/nature01568

