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Abstract
The difficulty of explaining evolutionary innovation on a scale that would account for the functional diversity of life and its 
components continues to dog evolutionary theory. Experiments are shedding light on this, but the complexity of the subject 
calls for other approaches as well. In particular, computational models that capture some aspects of simple life may provide 
useful proving grounds for ideas about how evolution can or cannot work. The challenge is to find a model ‘world’ simple 
enough for rapid simulation but not so simple that the real thing of interest has been lost. That challenge is best met with 
a model world in which real-world problems can be solved, as otherwise the connection with real innovation would be in 
doubt. Stylus is a previously described model that meets this criterion by being based on one of the most powerful real-world 
problem-solving tools: written language. Stylus uses a genetic code to translate gene-like sequences into vector sequences 
that, when processed according to simple geometric rules, form patterns resembling penned strokes. These translation prod-
ucts, called vector proteins, are functionless unless they form legible Chinese characters, in which case they serve the real 
function of writing. This coupling of artificial genetic causation to the real world of language makes evolutionary experimen-
tation possible in a context where innovation can have a richness of variety and a depth of causal complexity that at least 
hints at what is needed to explain the complexity of bacterial proteomes. In order for this possibility to be realized, we here 
provide a complete Stylus genome as an experimental starting point. To construct it we first wrote a concise description of 
the Stylus algorithm in Chinese. Using that as a proteome specification, we then constructed the Stylus genes to encode it. 
In this way the Stylus proteome specifies how its encoding genome is decoded, making it analogous to the gene-expression 
machinery of bacteria. The complete 70,701 base Stylus genome encodes 223 vector proteins with 112 distinct vector domain 
types, making it more compact than the smallest bacterial genome but with comparable proteomic complexity for its size.
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INTRODUCTION
The study of molecular evolution is complicated in some 

respects by the complexity of genetically encoded proteins and 
their functions. In particular, the length of a typical biological 
protein chain makes it but one of an extraordinarily large num-
ber of possible chains that differ in their amino acid sequences. 
The fact that no real process can sample anything but a minus-
cule fraction of these sequence possibilities means that many 
topics of fundamental importance, such as the structure of fit-
ness landscapes or the sparseness of function in protein sequence 
space, must be explored through inferences from a relatively 
small set of observations. Consequently, any tool that facilitates 
the making, testing, and refining of such inferences should be 
seen as a welcome addition to the available modes of inquiry.

Computational models have long been considered important 
in this respect because they enable quantitative sampling on a 
scale that may, in some cases, exceed what can be achieved exper-

imentally. For such studies to be relevant to biology, however, 
the model they implement must represent one or more aspects 
of life correctly. This intuitive principle can be expressed more 
rigorously in terms of classes. Specifically, any model system 
that shares a particular property with living systems becomes a 
co-member (with the living systems) of the class of all systems 
having that property. Such models are important from the per-
spective of theoretical biology because whatever we reason to be 
true of a class must be true of all its members, and (conversely) 
whatever is shown not to be true of a member is shown not to 
be generally true of the class. Consequently, models designed in 
such a way that they must be classified with life in important 
respects are necessarily of interest to the theoretician, whose aim 
is to understand generalities rather than particulars—not what 
this particular thing does per se, but rather why things like it 
must behave like it in certain respects.

http://dx.doi.org/10.5048/BIO-C.2011.3
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Stylus is a model of that kind that has been fully implemented 
with open-source software1 [1]. The motivation for Stylus was 
the recognition that prior models used to study evolutionary 
innovation did not adequately represent the complex causal 
connection between genotypes and phenotypes. Although very 
little is known about this connection as it applies to anatomical 
features in complex organisms, a great deal more is understood 
if we narrow the focus to molecular features in simple organ-
isms. Specifically, we know how genes encode protein chains 
in bacteria, and we have at least a conceptual understanding of 
how these chains fold to form functional proteins and protein 
complexes. With many thousands of published bacterial pro-
tein structures, we also have a reasonably good picture of both 
the variety of fundamentally different protein forms in simple 
life and the relationship between these forms and their biologi-
cal functions. What we lack is the combination of understand-
ing and computing power that would enable accurate general 
prediction either of protein structures from their sequences or 
of protein functions from their structures. Stylus in no way fills 
these gaps, but rather it provides an artificial world in which 
they are absent, and in which the causal connection between 
gene sequences and their functions is analogous in many 
respects to the real connection. That analogy, in combination 
with the computational tractability of the Stylus world, makes it 
possible to tackle the analogs of important questions that can-
not easily be tackled in the laboratory.

For the sake of clarity and simplicity, we have borrowed 
the vocabulary of biology to describe aspects of the artificial 
Stylus world that correspond to aspects of the real world. The 
advantage of this is that we avoid the communication chal-
lenges that a completely new vocabulary would bring, but we 
acknowledge some disadvantages as well. One of these is the 
possibility of what might be called ‘world confusion.’ That is, 
comments made about the Stylus world might, if removed from 
their intended context, be misconstrued as comments about 
biology. Another is that identity of terms might be interpreted 
as a presumption of genuine equivalence between the things to 
which these terms are applied. We intend to avoid confusion in 
both respects, but we recognize that some care will be needed 
to ensure this. To be clear, the Stylus world we describe in this 
paper is entirely non-biological. It has been constructed in a 
way that captures some of the basic concepts of molecular biol-
ogy, but it makes no use of biological data of any kind.

Because Stylus is substantially unlike other models, we will 
reiterate many of its key aspects in this paper. One of these is its 
use of a genetic code. Briefly, Stylus uses gene-like sequences of 
the four letters associated with DNA (A, C, G, and T) to encode 
graphical constructs that are built by connecting vectors end-
to-end to form complex two-dimensional paths. The encoding 
scheme used for this is deliberately analogous to the real genetic 
code. That is, of the 64 possible ‘codons’ (letter triplets), 61 
map to a fixed set of twenty coplanar vectors that vary in length 
and direction, with the remaining three (TAA, TAG, and TGA) 
signaling chain termination. By analogy, we refer to a complete 
vector path encoded in this way as a vector protein.

Vector proteins are of course very unlike real proteins in sub-
1 See https://github.com/biologic/stylus.

stance, the latter being dynamic molecular constructs while the 
former are static graphical constructs. Yet Stylus endows these 
graphical constructs with interesting similarities to their molec-
ular counterparts by uncovering and exploiting a pre-existing 
analogy—the analogy between the set of characters used in 
Chinese writing and the set of protein structures used in life [1]. 
Specifically, vector proteins are drawn objects that may func-
tion as legible Chinese characters if they are suitably formed. 
Stylus uses a database of ideal character forms, called archetypes, 
as the basis for calculating the geometric likeness of a given vec-
tor protein to a specified Chinese character. The calculation is 
rapid enough (often sub-millisecond) to be performed millions 
of times on a single processor core within a modest experimen-
tal timeframe, making it possible to tackle a wide variety of 
interesting problems in this model world (see Figure 1). Other 
models may match or surpass this computational speed, but 
Stylus is unique in its use of real function that maps well to 
molecular biology. It therefore represents a significant advance 
in the field of evolutionary modeling.
 

Figure 1: Stylus as a general-purpose engine for gene scoring. At 
the core of Stylus software is an algorithm that quantifies the likeness 
of a given vector protein to a specified Chinese character. This numeri-
cal result, called the proficiency score, is calculated as a double-precision 
floating-point number ranging in value from zero to one. Any number 
of scoring cycles may be executed in one experiment, starting from an 
initial gene and an initial assignment of drawn lines to character strokes. 
A variety of algorithms can be used to produce each new gene sequence 
after the prior one has been scored. Some of these simulate natural 
selection, but other algorithms can be used as well to suit the purpose 
of the experiment. As depicted, a single gene sequence can, in principle, 
be evaluated with respect to any of the 20,000+ Chinese characters (pro-
vided each of its strokes can be assigned). In practice, proficient vector 
proteins achieve much higher scores with respect to one character (the 
one they represent well) than others. Functional specificity therefore 
has a structural basis in the Stylus world, just as it does in the real world.  
doi:10.5048/BIO-C.2011.3.f1
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One thing Stylus does not offer, though, is minimalist sim-
plicity. Indeed, its main advantage—that it captures well some 
of the messy complexity of molecular biology—might also be a 
distinct disadvantage, depending on the intended application. 
To help potential users of Stylus understand where it fits within 
the existing assortment of evolutionary artificial-world models, 
the remainder of this section compares the most prominent 
alternatives.

Our discussion of the various models will be framed around the 
familiar causal series that informs our understanding of proteins:

 Sequence → Structure → Function. (1)

The central importance of this series for molecular evolution 
stems from the fact that it is closely coupled to another causal 
series, equally familiar:

 Genotype → Phenotype. (2)

Both are simplifications (even for bacteria) but because they 
represent key aspects of the real picture, they are of particular 
importance for evolutionary modeling. Interestingly, despite 
the apparent simplicity of Series 1 above, very few models have 
the causal structure it describes (Figure 2). Many evolution-
ary models include two of the three key property categories 
(sequence, structure, or function), but models representing the 
full series in proper causal relation are conspicuously rare.

Figure 2: Presence or absence of Sequence → Structure → Function causation in model worlds. See the main text for discussion. The lattice 
example depicted (from Hirst [2]) uses two bead types, H signifying ‘hydrophobic’ (black) and P signifying ‘polar’ (white). The top two examples of 
cellular automata are similarly binary, since they use the transition rules of Conway’s Game of Life [3], where pixels are either on (filled) or off (open). 
Animated illustrations of these two examples are available as supplementary CDF files (Gosper glider gun, Supplement S1 [4]; Rendell Turing machine, 
Supplement S2 [5]). To view these animations, install the free Wolfram CDF player (http://www.wolfram.com/cdf-player/).  doi:10.5048/BIO-C.2011.3.f2

http://www.wolfram.com/cdf-player/
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One important class of prior models is known as lattice models, 
referring to the kind of structure they describe. In a lattice 
world, ‘beads’ of a few different types (typically two) are joined 
in sequence to form chains. The beads may occupy any of the 
discrete points on a small two- or three-dimensional lattice 
(Figure 2). A chain is a sequence of beads with neighbors in the 
sequence constrained to occupy neighboring points on the lat-
tice, without overlaps. Of the many possible conformations for 
a given chain sequence, the ‘native’ conformation would be (if 
it exists) the one that is uniquely stable according to the simple 
physical model used. This explicit treatment of conformational 
alternatives makes lattice models particularly suitable for study-
ing protein folding, but they have also been used to study pro-
tein evolution [2, 6, 7]. However, a considerable limitation of 
these models for evolutionary applications is that, unlike real 
proteins, these chains have no function. That is, there are no 
actual problems that lattice structures are capable of solving. 
To get around this, the notion of function is simply replaced 
by structural features that correlate with functionality in real 
proteins, like structural stability [7] or the presence of open 
clefts or pockets ([2, 6]; see Figure 2). This may be useful for 
studying structural constraints as such, but it is less clear how 
useful it is for studying the actual functional constraints within 
which evolution must work.

Cellular automata, where fixed transition rules are applied 
repeatedly to transform a grid of active pixels (‘cells’), form 
another class of models that have been used to study evolu-
tion [8]. Although these models can incorporate functions, the 
most easily attained functions are themselves artificial, meaning 
that they are confined to the pixel worlds in which they occur. 
For example, a pixel construct known as the Gosper glider gun 
(Figure 2) produces a steady stream of small pixel objects called 
‘gliders’ when the pixel states are updated according to the tran-
sition rules of Conway’s Game of Life [3]. Viewing those states 
in succession as a movie [4] gives the impression of manufactur-
ing, in that the glider gun produces gliders with the regularity 
we associate with assembly lines. But of course, there are only 
two elementary events in that artificial world—a pixel going 
from off to on, or the reverse—and a glider is merely a particu-
lar group of five pixels in the on state. The gliding function is 
therefore a modest extension of the most elementary phenom-
ena that exist in that world, making the production of gliders 
qualitatively unlike the kind of manufacturing that interests us 
in the real world.

This points to a key principle for evolutionary modeling. 
If the ultimate objective is to explain how life acquired such 
remarkable solutions to real-world problems, then we need 
to look for models that can be used to study the solution of 
real-world problems. Otherwise, whatever we might learn from 
models lacking this capacity, we are left to wonder what it has 
to do with real-world problem solving. Interestingly, real prob-
lems—computational ones—can be solved by cellular automata 
that incorporate (in structures made of active pixels) all the nec-
essary components of a computational device2 (see Rendell Tur-

2 See http://rendell-attic.org/gol/tm.htm, and supplemental animation [5].

ing machine, Figure 2). As you might expect, though, automata 
that meet this condition are necessarily complex, making them 
cumbersome subjects for most evolutionary studies. However 
important these intricate pixel machines may be as computing 
abstractions, the huge amount of real computation that would 
be needed to produce and test large numbers of functional vari-
ants limits their utility for evolutionary simulation.

Explicit computational models, like Avida [9], offer a consid-
erable performance boost in this regard, but not without their 
own drawbacks. Like the pixel computers in cellular worlds, 
organisms in the Avida world are capable of versatile computa-
tion, but unlike their pixel counterparts, Avida organisms are 
endowed with computational hardware as a given. Instead of 
focusing on hardware, the Avida world focuses on sequential 
instructions with the idea that these are analogous to genomes 
[9]. So, sequences are connected to functions in that world, but 
the structures actually needed for this connection lie outside it, 
as indicated by the gap in the center column of Figure 2. Like 
the previous examples, then, Avida includes only part of the 
causal series represented above (Series 1).

However, Avida’s omission of structure masks what is argu-
ably an even more significant departure from the causal pat-
tern of life. Living things build the complex from the simple, 
a pattern that holds from the molecular level all the way up to 
the level of the whole biosphere.3 Avida inverts this pattern by 
using the complex to build the simple, making it less life-like 
in this important respect than the other models. The bead in a 
lattice model, the pixel in a cellular model, and the vector in 
Stylus are all simple in that they can be fully described in terms 
of their stand-alone properties and their interactions with simi-
larly simple neighbors. The same can be said of the amino acids 
used to construct proteins. All of these simple things can be 
used to construct much more complex things, but they are fully 
intelligible as simple things in themselves, without reference to 
such complexity. Serine, for example, has its particular chemi-
cal and physical characteristics as an amino acid, none of which 
necessitate or presuppose the existence of the much larger and 
more complex protein molecules that incorporate it. This con-
trasts sharply with the things—instructions—that are arranged 
sequentially to build Avida genomes. Since instructions for a 
computing device make explicit reference to the device (by 
specifying operations on read, write, and flow heads, input 
and output buffers, data registers and stacks, etc.) they are only 
intelligible as part of a full device specification, and they only 
work if that specified device is itself provided and configured to 
begin processing instructions. This makes instructions complex 
things in themselves, whether or not they are put to any good 
use. Consequently, because they are the fundamental building 
blocks of the Avida world, that world is arguably unsuitable as 
a tool for advancing our understanding of the real living world, 
where the building blocks are strikingly simple.

All the difficulties notwithstanding, the full causal series 
above (Series 1) has been captured in a cellular automaton, 
3 The fact that some organisms eat others is not an exception to this. Owls, for 

example, are not built from mice but rather from the simple molecular nutrients 
liberated by digesting mice (or other animals).
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namely the ‘universal constructor’ elegantly conceived by von 
Neumann [10] and impressively implemented by Pesavento 
[11] (Figure 2). Like pixel-based computing devices (e.g., the 
Rendell Turing machine of Figure 2), a universal constructor is 
a complex pixel construct,4 but in this case one that can build 
any stable pixel pattern according to instructions written on a 
pixel ‘tape.’ This makes it analogous to the real machines used 
in computer-aided manufacturing (CAM), in that both are 
programmable manufacturing devices. In fact, the relative sim-
plicity of pixel worlds enables universal constructors in those 
worlds to fully replicate themselves, a feat that is well beyond 
human technology in the real world. Along with this advantage, 
though, comes the common limitation of functions in artificial 
worlds: Since artificial worlds can easily be constructed in a way 
that greatly facilitates particular artificial functions, their relevance 
to real-world problem solving will remain questionable unless they 
can be used for just that—solving real problems.

With this background on evolutionary modeling, the advan-
tages of Stylus are readily apparent. It fully captures the causal 
relationships of Series 1, and it does so with the real-world 
function of written communication. Since language is arguably 
the most powerful and versatile tool in existence for real-world 
problem solving, this paves the way for evolutionary experimen-
tation in a model world where functional solutions can have a 
richness of variety, a range of complexity, a depth of hierarchy, 
and a practical reality reminiscent of those seen in proteomes. 
In addition to these benefits, Stylus has the pedagogical advan-
tage that language, unlike biology, is familiar to everyone.

The first objective of this work, then, is to realize some of 
these possibilities by constructing a Stylus text that functions 
like a simple bacterial proteome. Along with this, the second is 
to make Stylus more accessible to new users by making the full set 
of genes encoding this proteome (a complete Stylus genome) freely 
available as resources for using the Stylus world to frame and test 
ideas that may advance our understanding of the real world.

APPROACH
The first of the above objectives requires us to identify an 

important aspect of proteomic function in simple life that lends 
itself to the linguistic analogy on which Stylus is based. In con-
sidering what this should be, we begin with the observation 
that the most striking thing accomplished by all bacteria is self-
replication.

Real-world self-replication may be viewed as having two fac-
ets. One of these is self-description, which means carrying a 
representation of the self that can be implemented to build a 
self-replica. The other is the implementation itself—the work 
of building a replica in a natural setting according to the self-
description. So far, only life exhibits both of these facets. Com-
putational models commonly exhibit the first facet, but lack 

4 It as actually more complex than Figure 2 implies, in that it uses 32 pixel states 
instead of the 2 used in Conway’s Game of Life.

(among other things) the real-world interface needed for the 
second. The universal constructor of Figure 2, for example, 
depends on an actual computer (something it most definitely 
cannot construct) for its implementation. Similarly, while 
robots can implement computational algorithms in the real 
world, they depend on complex physical structures in order to 
do this, which inevitably complicates their replication.5

Accepting that genuine self-replication is beyond the reach of 
synthetic systems, we have narrowed our focus to self-descrip-
tion. The next question is, what does self-description look like 
in simple life? As a starting point, we take a reasonable answer 
to be that a bacterial cell’s chromosome and its gene-expression 
apparatus are jointly self-descriptive. Although it is common 
to think of the genome itself as being a ‘blueprint’ for the cell, 
genomic sequences are descriptive only when properly decoded, 
and this decoding is accomplished by the actions of many pro-
teins. In other words, the genome has to be interpreted in order 
for it to serve as a description of the proteome. In the simplest 
bacteria, much of the proteome is itself devoted to this task of 
interpretation.

Following this pattern, we seek a Stylus genome that encodes 
a special kind of text, namely, one that describes how to decode 
the genome. That is, the desired genome will encode a sequence 
of Chinese characters (in the form of vector proteins) that tells 
a reader of Chinese how Stylus genes are translated into vec-
tor sequences, and how those sequences are processed to make 
readable vector proteins. Although this approach joins all prior 
ones in falling well short of self-replication, it has the consider-
able advantage of stating an actual functional requirement. The 
stated self-descriptive function of the Stylus proteome provides 
a real basis for judging the adequacy of any proposed proteome, 
though certainly not a simple basis.

Before genes can be made accordingly, it is necessary to 
make some assumptions about structural similarities within 
the encoded proteome, and these will have implications for 
subsequent investigations. In the first place, we assume that 
genes encoding the same Chinese character at different loca-
tions in the genome should be true homologs, meaning that 
they descend from a common ancestral gene through a pro-
cess of neutral evolution. Secondly, we assume that the major 
structural components from which the vector proteins are com-
posed, referred to here as domains, should each have a fixed 
topology throughout the proteome. In other words, the por-
tions of all vector proteins that form a domain of any particu-
lar type should trace the structural elements (strokes, discussed 
under “Properties and comparisons” below) in the same direc-
tion and order. This enforces a structural likeness that accords 
well with the likeness of structural domains in real proteins.

5 The current state of the art in the field of self-replicating physical machines is ex-
emplified by RepRap, an open-source project aiming to build a rapid prototyping 
machine that can manufacture its own parts (http://reprap.org/wiki/Main_Page). 
Current versions replicate only their plastic parts, making complete replication 
dependent both on a supply of their most complex components (e.g., motors, 
solenoids, and electronics) and on full assembly [12].
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RESULTS

A Stylus glossary as a genome specification
To implement the above approach, we began by summarizing 

the algorithm that Stylus uses to translate gene-like sequences 
into vector proteins. This was done in the form of a concise 
glossary of nine key terms, which was composed in English and 
then translated into Chinese (Figure 3). 

The resulting Chinese text is not a vector proteome in itself, 
but rather a specification for building a vector proteome by con-
structing a set of genes that encode it. For each line of Chinese 

text in Figure 3, a series of Stylus genes is needed to encode 
the characters (one gene per character). These gene series are 
analogous to bacterial operons—suites of genes encoding a set of 
proteins used for a coordinated task (e.g., the stepwise chemi-
cal conversions of a metabolic pathway). The process used to 
make these Stylus genes will be described later (see Methods 
Overview). First we discuss how the Stylus model needs to be 
extended in order for the genetic code itself to be encoded.

Genetic code specification and gene structure
By ‘genetic code’ we mean the reliable association of codons 

with amino acids that enables genes to encode proteins. Real 

Figure 3: Specification for a compact self-descriptive Stylus proteome. Each of nine key terms is presented with its definition on a single line of 
English text. Immediately below these are the corresponding Chinese translations (written in traditional form, as explained in reference 1) with hexa-
decimal Unicode numbers appearing below each character. Gene identifiers have the form uuuu.n, where uuuu is the Unicode number of the encoded 
character and n (shown below the Unicode numbers) indicates the nth instance of that character in the genome. Colors show where some of the more 
heavily used characters appear and pair them with English meanings. As discussed in the text, the bracketed portion shows (in abbreviated form) how 
the genome and its encoded proteome specify the genetic code.  doi:10.5048/BIO-C.2011.3.f3

http://dx.doi.org/10.5048/BIO-C.2011.3.f3


Volume 2011  |   Issue 3 |   Page 7

A Stylus-Generated Artificial Genome

cells depend on a set of tRNAs and their corresponding ami-
noacyl-tRNA synthetases in order to specify the genetic code. 
Implementation of that code requires numerous additional 
components to make the amino acids and to incorporate them 
into protein chains. In the realm of language, the nine glossary 
entries of Figure 3 are analogous to the functions that imple-
ment a genetic code in that they describe how the code is imple-
mented in the Stylus world. It is desirable to extend this analogy 
by devising a way for the code itself to be specified genetically, 
as it is in real life.

The linguistic equivalent of a set of tRNAs with their dedi-
cated synthetases would be a set of statements of like, “Codons 
TGT, TGC, and TGG specify the northwestward vector of 
medium length,” which would establish the desired mapping 
(see Figure 4). We devised a compact way of representing this 
kind of statement by using the Chinese characters for 
small (小, U+5C0F), medium (中, U+4E2D), and large (大, 
U+5927) to represent the three possible vector lengths. When 
they are written in their normal orientations, we take these 
three characters to denote northward vectors of the indicated 
lengths. Then, to represent the remaining seventeen vectors we 
form pseudo-characters by rotating 小, 中, or 大 to the appro-
priate angle, as shown in Figure 4B.

With these single-character representations of the twenty 
vectors established, the next step is to devise a compact way of 
specifying the codons that encode them. For this, we chose to 
elaborate on the concept of genes in the Stylus world. Figure 
5A shows how the concept of open reading frames, which mir-
rors biology precisely [1], has now been incorporated into a full 
conception of genes. Conceived in this way, Stylus genes depend 
on upstream sequence in order for translation to occur, as do 
real bacterial genes. Analogous to the Shine-Dalgarno sequence 
found on bacterial mRNAs [13, 14], Stylus genes require6 an 
AGG sequence separated from the ATG start codon by twelve 
bases, as depicted.
6 We speak of requirements here only with respect to the model as currently 

conceived. Stylus software continues to operate on isolated open reading frames, 
without upstream sequences.

For most genes, these twelve bases are merely a spacer 
between the AGG and the ATG, but they serve a specific pur-
pose for the special set of genes that specify the genetic code. 
Figure 5B illustrates this by depicting the operon responsible 
for designating the codons that specify the northeastward vec-
tor of medium length (see Nem in Figure 4A). Here, the twelve 
bases upstream of the first gene in the operon are interpreted as 
a series of four codon specifications, namely: ATG, ATC, ATT, 
and ATA. These combine with the functions of the three genes 
in the operon to provide this meaning: ATG, ATC, ATT, and 
ATA signify (特符) the Nem vector (represented by 中 rotated 
clockwise by 45 degrees). Vector encoding is completely speci-
fied by twenty operons of this kind that differ only in their 
third genes and in the twelve-base regions upstream of their first 
genes. One additional operon is needed to specify stop codons. 

Figure 4: Genetic code implementation in Stylus. A) The default mapping of codons to vectors used by Stylus, as described previously [1]. B) The 
twenty vectors used to construct vector proteins, along with their standard [1] three-letter designations (left) and their character or pseudo-character 
designations (right). Small, medium, and large vectors are of length e0, e1/2, and e1, as described [1]. Portions of this figure are reproduced from Figure 
3 of reference 1.  doi:10.5048/BIO-C.2011.3.f4

Figure 5: Using upstream sequences to specify the genetic code. 
A) Expressed genes in the Stylus world carry a fifteen-base upstream 
sequence, beginning with AGG. B) The structure of the operon that 
assigns codons to the Nem vector (see text for full description). 
doi:10.5048/BIO-C.2011.3.f5

http://dx.doi.org/10.5048/BIO-C.2011.3.f4
http://dx.doi.org/10.5048/BIO-C.2011.3.f5
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This operon works in the same way as the others, but it has 
an additional gene because two characters (終止) are used to 
convey the meaning terminate. Table 1 gives the gene identifiers 
and the upstream sequences for all 21 code-specifying operons.

Table 1: Structure of operons specifying the genetic code

Twelve-base  
upstream sequence* Gene order† Specifies

CTA,CTT,CTC,CTG 7279.02, 7B26.04, 5C0F.01 Nos

TTG,TTA,TTA,TTG 7279.03, 7B26.05, 4E2D.01 Nom

TTT,TTT,TTC,TTC 7279.04, 7B26.06, 5927.01 Nol

GTA,GTG,GTC,GTT 7279.05, 7B26.07, 4011.01 Nes

ATG,ATC,ATT,ATA 7279.06, 7B26.08, 4012.01 Nem

GCT,GCG,GCC,GCA 7279.07, 7B26.09, 4021.01 Eas

ACG,ACA,ACG,ACA 7279.08, 7B26.10, 4022.01 Eam

ACT,ACC,ACC,ACC 7279.09, 7B26.11, 4023.01 Eal

CCT,CCG,CCC,CCA 7279.10, 7B26.12, 4031.01 Ses

TCG,TCC,TCT,TCA 7279.11, 7B26.13, 4032.01 Sem

CAA,CAA,CAG,CAG 7279.12, 7B26.14, 4041.01 Sos

CAT,CAC,CAC,CAC 7279.13, 7B26.15, 4042.01 Som

TAT,TAC,TAT,TAC 7279.14, 7B26.16, 4043.01 Sol

GAT,GAA,GAC,GAG 7279.15, 7B26.17, 4051.01 Sws

AAA,AAC,AAT,AAG 7279.16, 7B26.18, 4052.01 Swm

GGT,GGG,GGA,GGC 7279.17, 7B26.19, 4061.01 Wes

AGG,AGA,AGA,AGG 7279.18, 7B26.20, 4062.01 Wem

AGC,AGT,AGT,AGT 7279.19, 7B26.21, 4063.01 Wel

CGC,CGA,CGG,CGT 7279.20, 7B26.22, 4071.01 Nws

TGG,TGT,TGC,TGT 7279.21, 7B26.23, 4072.01 Nwm

TAG,TAA,TGA,TGA 7279.22, 7B26.24, 7D42.01, 
6B62.01

Ter

* Sequences shown are from the final genome.
† The complete gene order for the genome is obtained by inserting gene identifiers 

from this column into Figure 3 at the brackets. Gene identifiers beginning with 
40 do not correspond to actual Unicode characters, but rather to characters that 
have been rotated as described.

Properties and comparisons
Proteome complexity. Table 2 summarizes a number of 

key properties of the Stylus genome that was constructed (as 
described below) to encode the Chinese text of Figure 3. To 
highlight the analogies with real genomes, we compare this Sty-
lus genome to several of the smallest known bacterial genomes—
those of the obligate endosymbiont Candidatus Carsonella 
ruddii [15], the parasite Mycoplasma genitalium [16], and the 
obligate symbiont Nanoarchaeum equitans [17]. At just under 
half the size of the Candidatus Carsonella genome, the Stylus 
genome is smaller than any known bacterial genome. Yet the 
complexity of its proteome, in terms of the number of encoded 
proteins and their domain composition, is comparable to that 
of the real organisms. As seen in Table 2, the Stylus proteome 
has 41 more proteins than does the Candidatus Carsonella pro-
teome, and it averages more domains per protein than any of 
the listed bacterial proteomes.

The distribution of protein chain lengths in the tiny pro-
teome of Candidatus Carsonella shows a marked shift toward 
shorter proteins relative to the other bacterial proteomes (Fig-
ure 6). The distribution for the Stylus proteome peaks at a simi-
larly short chain length but then drops off more steeply than 
any of the bacterial distributions. The largest vector protein in 
the Stylus proteome consists of 422 monomer units, making it 
less than one third the length of the largest protein from any of 
the bacterial proteomes.

 For all proteomes the histograms of Figure 7 show that most 
domain types are used only once or twice. At the other extreme, 
all proteomes except that of Candidatus Carsonella have at least 
one domain type that is used twenty or more times. Interest-
ingly, the Stylus proteome has many more of these high-use 
domain types than do the natural proteomes—six, as compared 
to one each for the proteomes of the bacteria. The proportion of 
single-use domain types in the Stylus proteome is correspond-
ingly low (Table 2), having the overall effect of a flatter domain-
use histogram7 for the Stylus proteome compared to the others 
(Figure 7).

Figure 8 shows the major linguistic components of all 87 
characters represented by the Stylus proteome. Because these 
components have functional significance in Chinese writing, 
they provide a basis for dividing vector proteins into function-
ally significant domain-like regions [1]. To avoid confusion, 
we apply the term domain not to the character components of 
Figure 8, but only to the corresponding portions of vector pro-
teins, as shown in Figure 9. 

The compositional relationships of Figure 8 provide impor-
tant design constraints for building the proteome. Briefly, each 
character component consists of one or more strokes, which 
are continuous penned lines that may include curves or sharp 
bends. Although conventional writing technique calls for 

7 Relatively speaking. Considering the logarithmic scale, all of these proteomes 
show a pronounced preference for low-use domains.
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strokes to be drawn in a particular order and direction, Stylus 
evaluates the functional proficiency of an encoded character 
(a vector protein) by examining only the shapes and locations 
of the strokes. This allows a vector chain to form a particular 
character component in multiple ways (two directions for each 
stroke, with n! ways to order n strokes). Consequently, to spec-
ify a vector domain type, one must specify both the linguistic 
component and the order and direction in which its strokes 
are traced (referred to as the threading scheme). In order for all 
instances of a particular component throughout the proteome 
to share substantial structural similarity (see Approach), we 
have used a single threading scheme for each, resulting in 112 
domain types (Table 2).

Proficiency and Fitness. As originally described [1], fitness 
in the Stylus world is akin to efficiency, which is calculated by 
dividing the overall functional proficiency of a genome by its 
resource cost. This overall proficiency clearly should be a func-
tion of the proficiency scores of the individual genes, as calcu-
lated by Stylus, but the question of what that function should 
look like is itself an interesting research topic. Given that the 
overall function of any Stylus-world genome should be linguis-
tic meaning at the level of a text, it follows that genomes should 
divide naturally into operon-like groups of genes that encode 
sentence-level meanings [1]. One way of calculating the fitness 

of a whole genome sequence that has been proposed is to clas-
sify operons (sentences) as either essential or nonessential [18], 
but alternative approaches may also be useful.

To maximize the versatility of the genome described here, we 
applied a generic fitness function in which all genes are treated 
as equal contributors. This was done by requiring all genes to 
meet the same gene-level proficiency standard. Rather than set-
ting the standard in an arbitrary way, we used the proficiency 
distribution for optimized genes as a guideline for setting it (see 
Methods Overview). The result is a minimum gene proficiency 
of 0.51 on a scale ranging from 0 to 1 (see Figure 10). Since 
Stylus reliably handles proficiency scores that are many orders of 
magnitude lower than this, the 0.51 standard falls at the high 
end of the useful range in logarithmic terms. It consequently 
proved easier to meet that standard with some characters than 
with others. One reason for this is that characters with curved 
strokes are represented only approximately by the linear mono-
mers (vectors) that Stylus uses (Figure 4B). Their representa-
tion can always be improved by using more vectors (effectively 
shrinking the scale of the vectors relative to the scale of the 
character), but since this also increases the gene cost (measured 
by the number of bases and vectors used) an optimum gene size 
is reached, beyond which the cost of further gene expansion 
outweighs the benefit.

Table 2: Comparison of Genome Properties

Stylus genome Candidatus Carsonella ruddii * Mycoplasma genitalium† Nanoarchaeum equitans‡

Topology Linear Circular Circular Circular

Directionality Unidirectional (ssDNA) Bidirectional  (dsDNA) Bidirectional  (dsDNA) Bidirectional (dsDNA)

Size 70,701 b 159,662 bp 580,076 bp 490,885 bp

% coding 95% 93% 90% 91%

Proteins encoded 223 182 475 540

Avg protein length 99 v 274 aa 369 aa 280 aa

Domain types used 112 136 (172) § 278 (463) § 228 (407) §

Uses per type 4.3 1.5 2.0 2.0

Single-use types‖ 50 (45%) 106 (78%) 195 (70%) 144 (63%)

Domains per protein 2.1 1.4 1.9 1.5

Avg domain length 55 v 195 aa 194 aa 182 aa

* See http://www.ncbi.nlm.nih.gov/genome?term=NC_008512, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=5s. Data in the bottom five 
rows are statistical, based upon incomplete assignment of the genome (79% amino acid coverage, according to Superfamily database).

† See http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=search&term=NC_000908, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.
cgi?genome=mg. Data in the bottom five rows are statistical, based upon incomplete assignment of the genome (60% amino acid coverage, according to Superfamily 
database).

‡ See http://www.ncbi.nlm.nih.gov/genome?term=NC_005213, and http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=na. Data in the bottom five 
rows are statistical, based upon incomplete assignment of the genome (56% amino acid coverage, according to Superfamily database).

§ The number of domain types assigned by the Superfamily database (see links above) is given first, with a projection of the actual total number in parentheses (based on the 
proportion of coding sequence that cannot yet be assigned).

‖ Percentages give the proportion of domain types that are used only once in the respective proteomes. For the bacterial proteomes, these numbers were determined by 
analyzing the domain-assignment text files provided by the Superfamily database (see links above).

http://www.ncbi.nlm.nih.gov/genome?term=NC_008512
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=5s
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=search&term=NC_000908
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=mg
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=mg
http://www.ncbi.nlm.nih.gov/genome?term=NC_005213
http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/gen_list.cgi?genome=na
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Figure 6: Distribution of protein chain lengths in compared proteomes. Chain length is measured in monomer units: amino acid residues for 
natural proteins and vectors for Stylus proteins. Follow NCBI web links in Table 2 legend to retrieve proteome tables for the bacterial species. 
doi:10.5048/BIO-C.2011.3.f6

Figure 7: Distribution of domain usage in compared proteomes. Follow the Superfamily web links in the Table 2 legend to retrieve domain 
assignments for each bacterial species. 
doi:10.5048/BIO-C.2011.3.f7

http://dx.doi.org/10.5048/BIO-C.2011.3.f6
http://dx.doi.org/10.5048/BIO-C.2011.3.f7
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DISCUSSION
In this paper we have actualized some of what was earlier 

sketched out in concept [1] by constructing a compact Stylus 
genome that encodes a vector proteome with a real function. 
Like the gene-expression machinery of bacteria, the Stylus pro-
teome specifies how the genomic text is interpreted as instruc-
tions for building its encoded proteins (vector proteins in the 
case of Stylus), but instead of giving this specification in the 
form of physical interactions and chemical processes that actu-
ally implement it (as in life), the Stylus proteome gives it in the 
form of a written description.

Because these are substantially different meanings of ‘specifi-
cation,’ we will return now to the question we started with: Of 
what use are artificial-world models to people interested in under-
standing the real world? The short answer is that different mod-
els may be good for different things. One important topic we 
have touched on that Stylus does not address is self-replication. 
Other models, like von Neumann’s universal constructor or 
Avida, provide explicit artificial versions of replication, whereas 
in Stylus the ability to replicate is part of the assumed context. 
What Stylus offers that no other model offers, to our knowl-
edge, is an artificial version of gene-to-protein genetic causation 
that parallels the real thing. This brings a new level of reality to 
model investigations of one of the most important and con-

Figure 8: Composition of characters represented in the Stylus proteome. All 87 characters represented in the Stylus proteome are shown, each 
under the heading that specifies the number of components used to construct it. Characters built from multiple components (two or three) have a 
colon to their right, followed by a comma-separated list of their components. Under each heading, characters are arranged in columns according to 
Unicode order, with shading providing visual separation of columns. Compositions were assigned by a native reader of Chinese (P. Lu). Because most 
components exist as stand-alone Chinese characters, they are identified with their own Unicode identifiers. Artificial identifiers, all beginning with 40, 
were given to components without existing identifiers. Pseudo-characters were likewise given artificial identifiers.  doi:10.5048/BIO-C.2011.3.f8

Figure 9: Domain composition of vector protein 5E7E.01. The charac-
ter compositions listed in Figure 8 determine how vector proteins divide 
into structural domains. The two domains of 5E7E.01 are differentiated 
by stroke color in a 3D rendering and an inset 2D rendering. Moves 
between strokes are shown only in the 3D rendering, with vertical lift 
added in order to make the path of the vector chain easier to see. Vector 
domains are often formed by an unbroken stretch of chain, as seen for the 
戍 (U+620D) domain depicted here (purple). Exceptions exist, though, 
both in natural proteins and in vector proteins, as seen here by the pur-
ple domain interrupting the green domain.  doi:10.5048/BIO-C.2011.3.f9

http://dx.doi.org/10.5048/BIO-C.2011.3.f8
http://dx.doi.org/10.5048/BIO-C.2011.3.f9
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troversial subjects in the life sciences—the origin of biological 
innovations.

Figure 11 underscores the significance of this by showing the 
asymmetric relationship between evolutionary causation and 
genetic causation at the molecular level. Whatever the origin 
of these low-level processes of genetic causation may have been, 
their physical operation today depends only on the molecular 
systems now implementing them. This of course makes the 
study of molecular biology as we now see it entirely legitimate 
and feasible as a discipline in itself, wholly uncoupled from 
questions of origins. But the reverse is not at all true. Evolution-
ary causation is intrinsically tied to the relationship between 
genotype and phenotype, which depends on low-level genetic 
causation. It follows that evolutionary explanations of the ori-
gin of functional protein systems must subordinate themselves 
to our understanding of how those systems operate. In other 
words, the study of evolutionary causation cannot enjoy the 
disciplinary autonomy that studies of genetic causation can.

In view of this, the contribution of Stylus is to make evolu-
tionary experimentation possible in a model world where low-
level genetic causation has the essential role that it has in the real 
world. Combined with the free Stylus software, the complete 

Stylus genome made freely available with this paper8 paves the 
way for analogy-based studies on a wide variety of important 
subjects, many of which are difficult to study by direct experi-
mentation. Among these are the evolution of new protein folds 
by combining existing parts, the optimality and evolutionary 
optimization of the genetic code, the significance of selective 
thresholds for the origin and optimization of protein functions, 
and the reliability of methods used for homology detection and 
phylogenetic-tree construction.

METHODS OVERVIEW
Figure 12 summarizes the process used to construct the pair 

of genes needed to encode proteome character 成 (U+6210).9 
With slight variations (as noted below) the same process was 
used for all genes. Briefly, steps 1 through 4 of Figure 12 were 
used to generate prototype genes for each of the 87 proteome 
characters. Then, in the fifth step, a single prototype was chosen 
for each character in a way that maximizes the fitness of the 
complete genome. Finally, the “homologs” of each prototype 
that are needed to represent the complete proteomic text (Fig-
ure 3) were generated from these prototypes. Each of these steps 
are described in more detail next.

The process of gene construction
Given a character archetype (i.e., an ideal geometry [1]), gene 

construction begins by specifying both the order in which the 
encoded vector chain forms the strokes, and the end-to-end 
direction in which each stroke is formed. This joint specifica-
tion—the threading scheme—is illustrated for 成 (U+6210) 
8 See Table 3 for descriptions of supplementary files and links. 
9 The positions of this character in the proteome (see Figure 3) are: character 7 of 

line 1, and character 18 of line 5.

Figure 10: Distribution of gene proficiencies before and after 
genome optimization. The upper distribution reveals the range of 
natural proficiencies of the vector proteins, some of them attaining high 
scores more readily than others. Genome construction took account of 
this by targeting the genes at the low-scoring end of the distribution for 
proficiency enhancement. All genes were then allowed to ‘relax’ to the 
genomic optimum of 0.51 (see text), which produced the narrow distri-
bution in the bottom graph.  doi:10.5048/BIO-C.2011.3.f10

Figure 11: The relationship between low-level genetic causation and 
evolutionary causation. Each box in a long vertical succession (abbrevi-
ated) represents the state of a bacterial species at a particular time in its 
evolutionary history. The process of genetic causation (i.e., the complete 
process by which genes give rise to traits, like metabolic capabilities) is 
always a present reality that operates as is and may therefore be prop-
erly studied and explained as is, irrespective of the vertical succession. 
The vertical succession, on the other hand, cannot be explained properly 
without due consideration of genetic causation. 
doi:10.5048/BIO-C.2011.3.f11

http://dx.doi.org/10.5048/BIO-C.2011.3.f10
http://dx.doi.org/10.5048/BIO-C.2011.3.f11
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in the first step of Figure 12. The algorithm used to gener-
ate threading schemes attempts to minimize the total length 
of stroke connections (grey lines in step 1). That algorithm 
was applied to character components, as shown in Figure 8, 
with the resulting component threading schemes combined 
(by visual inspection) in order to build threading schemes for 
multi-component characters. In cases where none of the com-
ponents of a multi-component character appear in any other 
proteome character, the algorithm was applied directly to the 
whole character.

The second step, synthesis of a Stylus gene to serve as a start-
ing point for further processing with Stylus, is automated with 
Inscribe, the same Flash application used for manual construc-
tion of archetypes [1]. Using the archetype and the threading 
scheme as inputs, Inscribe produces a gene encoding a vector 
chain that traces the archetype strokes. As seen in Figure 12, the 
resulting vector protein is both large (in terms of the number of 
vectors used) and highly regular in structure. Further process-
ing is needed to transform this into a structure that uses vectors 
efficiently and shows the variability that is typical of biological 
structures.

A simple randomization step (step 3) removes the regular-
ity, with a subsequent optimization step paring the size down 
in order to maximize efficiency. Optimization was achieved by 
applying both single and double mutations (including three-
base insertions and deletions) within a window that scans the 
length of the gene, selecting either for increased proficiency or 
for an increased ratio of proficiency to cost (in Stylus terminol-
ogy, this ratio is referred to as the ‘fitness’ of a gene). As with 
real biological sequences, the vast space of sequence possibili-
ties in the Stylus world and the complexity of their mapping to 
function preclude global optimization, so the product of any 
optimization process is only locally optimal.

Incorporating genes into a complete genome
Figure 10 (top) shows the distribution of gene proficiencies 

obtained when each prototype gene is optimized to maximize 
the ratio of proficiency to cost. The mean and mode of this 
distribution are both seen to be above 0.5, suggesting that a 
genome with a uniform proficiency standard above 0.5 may be 
achievable. With this aim, genes whose optimized prototypes 
had proficiencies below 0.54 were re-optimized to maximize 

Figure 12: Steps used to produce the pair of genes encoding 成 (U+6210). The vector proteins resulting from steps 2 through 6 are shown with 
blue strokes and grey moves. The product of the first step is simply a scheme for tracing the strokes, depicted by connecting the stroke termini of the 
archetypal form with lines representing moves. In this first graphic only, grey dots mark the beginning of each move. The threading scheme therefore 
starts at the extreme lower left and proceeds through six strokes (the first two have abutting ends). The fifth step, selecting the gene prototype that 
maximizes genomic fitness, is illustrated by highlighting one of the products of step 4. Costs are based on the number of bases and the total vector 
length as described in Supplement 3 [18].  doi:10.5048/BIO-C.2011.3.f12

http://dx.doi.org/10.5048/BIO-C.2011.3.f12


Volume 2011  |   Issue 3 |   Page 14

A Stylus-Generated Artificial Genome

proficiency instead of proficiency ÷ cost. This has the effect of 
allowing genes at the low end of the proficiency distribution to 
be larger in order to improve their proficiencies. Multiple pro-
totypes were produced in this way for low-proficiency genes, as 
shown for 成 in Figure 12 (step 4). 

Taking all available prototypes into consideration, along with 
their associated proficiencies and costs, one can calculate the 
total cost of a genome that meets a specified proficiency stan-
dard by choosing for each proteome character the least costly 
gene that meets the standard. As the standard is increased, more 
costly prototypes have to be chosen for an increasing number 
of genes, eventually making the cost of further increase out-
weigh the benefit. The simple genomic fitness measure we used 
to perform this analysis is the ratio of the proficiency standard 
to the total cost of meeting that standard. Plotting this measure 
against the proficiency standard shows that the most fit genome 
that can be constructed from the available gene prototypes 
meets a proficiency standard of 0.51 (Figure 13).

Using this standard, we produced as many ‘homologous’ 
genes as needed for each character, starting with the chosen pro-
totype for that character (step 6 of Figure 12). In the process, all 
genes were allowed to ‘relax’ to the proficiency standard of 0.51 
by generating long mutation histories with selection applied 
simply to meet this standard (irrespective of the extent to which 
it was exceeded). As expected, the resulting set of genes shows a 
proficiency distribution with a sharp peak just above 0.51 (Fig-
ure 10, bottom).

Finally, since the product of the above steps is a set of 223 
Stylus gene files (each carrying an open reading frame and 
information on the vector protein it encodes), additional steps 
were needed to convert this set into a genome. First, the gene 
structure shown in Figure 5A calls for fifteen bases, beginning 
with AGG, upstream of each open reading frame. For 21 genes 
(all encoding 特: U+7279) these upstream sequences have the 
critical function of specifying the genetic code. For the rest 
of the genes, the upstream sequences are arbitrary apart from 
the initial AGG. Arbitrary upstream sequences were generated 
stochastically (using Mathematica), as were the order of codon 
specifications in the critical upstream sequences (first column 
of Table 1). Next, because the processing performed with Stylus 
leaves the stop codons at the end of each gene untouched, these 
were stochastically reassigned from the three possibilities: TAA, 
TAG, TGA. After these changes were made, a full genome 
sequence was assembled and tested for unintended occurrences 

(in all three reading frames) of the gene-initiation pattern: 
AGG, NNN, NNN, NNN, NNN, ATG. Twelve unintended 
occurrences were found, each of which was disrupted by alter-
ing the AGG pattern with a silent mutation. A final check con-
firmed that the corrected genome has precisely 223 occurrences 
of the gene-initiation pattern, each at its expected location.

Gene distribution and identification
In keeping with the open-source/open-access philosophy that 

has characterized the Stylus project, all gene and archetype files 
are made freely available with this paper (see Table 3) under the 
terms of the Creative Commons Attribution License described 
on page 1. The uniqueness of digital object identifiers (DOIs) 
allows sets of Stylus-world objects to be referred to unambigu-
ously in future works. Additionally, Stylus automatically assigns 
universally unique identifiers (UUIDs) to all genes it produces, 
as does Inscribe for both genes and archetypes. These unique 
identification systems facilitate open sharing of Stylus objects on 
a large scale without compromising the ability of researchers to 
refer unambiguously to specific instances.

Figure 13: Dependence of genome fitness on the gene proficiency 
standard. In the simple case where the genomic fitness is equal to the 
proficiency of the least proficient gene divided by the total cost (genome 
+ proteome; [18]), the vertical scale in this plot represents fitness (assum-
ing the least proficient gene barely meets the required standard). The 
red line marks the proficiency standard that maximizes fitness. 
doi:10.5048/BIO-C.2011.3.f13

http://dx.doi.org/10.5048/BIO-C.2011.3.f13
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Table 3: Supplementary Files*

Description File name Size doi link

Gosper glider gun animation† glider_gun.cdf 66 K doi:10.5048/BIO-C.2011.3.s1

Rendell Turing machine animation† Rendell_Turing.cdf 19.4 M doi:10.5048/BIO-C.2011.3.s2

Reference 1 supplement (for genomic fitness model) Stylus-scoring-algorithm.pdf 1.6 M doi:10.5048/BIO-C.2011.3.s3

Stylus gene files (XML) for all 223 ORFs in ZIP archive Stylus-gene-files.zip 885 K doi:10.5048/BIO-C.2011.3.s4

Stylus proteome archetype files (XML) in ZIP archive‡ Stylus-proteome-archetypes.zip 160 K doi:10.5048/BIO-C.2011.3.s5

Complete Stylus genome sequence as FASTA file full-Genome.fasta 74 K doi:10.5048/BIO-C.2011.3.s6

FASTA files for all 223 full-length genes in ZIP archive full-gene-FASTA-files.zip 94 K doi:10.5048/BIO-C.2011.3.s7

FASTA files for all 223 ORFs in ZIP archive orf-FASTA-files.zip 86 K doi:10.5048/BIO-C.2011.3.s8

Ordered list of gene identifiers, grouped by operon§ gene-identifiers-by-operon.txt 8 K doi:10.5048/BIO-C.2011.3.s9

Composition of proteome characters‖ proteome-character-composition.txt 4 K doi:10.5048/BIO-C.2011.3.s10

* Distributed under the terms of the Creative Commons Attribution License, as described on page 1.
† Requires the free Wolfram CDF player (http://www.wolfram.com/cdf-player/).
‡ One archetype file is provided for each of the 87 proteome characters. See reference 1 for information on archetypes.
§ Operon groupings correspond to lines of text in Figure 3.
‖ The file has one line for each of the 87 proteome characters, each line giving the Unicode identifier for the character followed by a list of one or more identifiers specifying 

its components, as in Figure 8.
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