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Abstract

A mathematical theory of complex specified information is introduced which unifies several prior methods of computing specified
complexity. Similar to how the exponential family of probability distributions have dissimilar surface forms yet share a common
underlying mathematical identity, we define a model that allows us to cast Dembski’s semiotic specified complexity, Ewert et
al.’s algorithmic specified complexity, Hazen et al.’s functional information, and Behe’s irreducible complexity into a common
mathematical form. Adding additional constraints, we introduce canonical specified complexity models, for which one-sided
conservation bounds are given, showing that large specified complexity values are unlikely under any given continuous or discrete
distribution and that canonical models can be used to form statistical hypothesis tests, by bounding tail probabilities for arbitrary
distributions.
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“Life must depend on a higher level of complexity, structure without predictable repetition, he argued.”
- James Gleick, “The Information: A History, a Theory, a Flood”, ch. 9

INTRODUCTION

Specified complexity, the property of an object being both
unlikely and structurally organized, has been proposed
as a signifier of design [1–3]. Objects exhibiting specified
complexity must be both complex (e.g., unlikely under
the relevant probability distribution) and specified (e.g.,
conform to an independent or detached specification).
While mathematical methods for measuring specified
complexity have changed over the decades [1, 4–6], the
underlying components of specification and complex-
ity have remained constant. Possible applications of
specified complexity include differentiating malicious net-
work behavior from non-intentional anomalies, identify-
ing genetically-modified material in agricultural products
(such as artificially engineered gene sequences), identify-
ing intelligently engineered extra-terrestrial signals, and
testing for artificial general intelligence [7]. At its core,
it has been proposed as a method of sorting artificial
or teleological structures from naturally occurring unin-
tentional ones. Specified complexity has been severely
criticized, both for its underlying logic and its various
formulations [8–11].

Recent work in specified complexity has proposed
using algorithmic information theory as a way of com-
putationally grounding specified complexity, under the
name of algorithmic specified complexity (ASC) [5, 6].
Ewert and collaborators have shown that under any pro-
posed discrete distribution, sequences exhibiting high
levels of ASC must be unlikely [6]. We extend this body
of work by generalizing the result of Ewert et al. [6],
showing that all specified complexity models of a certain
class, which we call canonical models, share this property.
We re-derive the existing result of Ewert et al. [6] as a
corollary to our general theorem, and prove a number
of previously unknown results, including a conservation
result for a variant of semiotic specified complexity, in-
troduced in Dembski (2005) [4]. These results add to
a body of work generally known as conservation of in-
formation theorems, which prove that in many contexts
it takes as much information to find an object as you
might gain by using that object, rendering explanations
that rely on such specialized objects as cases of special
pleading. Viewed as a conservation theorem, if one char-
acterizes specified complexity as a form of information
signal measurable in bits, the probability under the pro-
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posed distribution of encountering a structure exhibiting
b or more bits of complex specified information is no
greater than 2−b, thus incurring an information cost of
at least b bits.

More importantly, this work formally reduces speci-
fied complexity testing to a form of statistical hypothe-
sis testing, a view inspired by Dembski (2005) [4] (and
preceded by Milosavljević [12]). Accordingly, we demon-
strate the connection for canonical specified complexity
models, where the model core (called a kardis) plays the
same role as a p-value under a null distribution. We
prove that for such models the null-distribution probabil-
ity mass of values as extreme as the one observed is upper
bounded by the significance level α, which is the crucial
property for p-value significance tests. Thus, we formally
establish the canonical model as a particular statistical
hypothesis test statistic, one which would prove useful
in cases where only a likelihood and a specification value
are available and the behavior of the distribution outside
of the given observation is otherwise unknown.

We begin by reviewing the general structure of speci-
fied complexity models and defining their common and
canonical model forms, along with providing a general
recipe for constructing new specified complexity models.
We then review statistical hypothesis testing and the
level-α property, formally reducing p-value testing to a
form of specified complexity model hypothesis testing.
Conservation and level-α test properties of canonical
specified complexity models are proven, and instructions
for conducting specified complexity model hypothesis
tests are also given. Algorithmic specified complexity,
semiotic specified complexity, and functional informa-
tion are reduced to common form, canonical variants
are derived, and conservation theorems are proven for
each as corollaries to our results for the general canonical
specified complexity models. While criticisms of speci-
fied complexity [8–11] (and their rebuttals [2, 13–16]) are
duly acknowledged, we do not attempt to address them
here, as the purpose of this manuscript is to prove the
mathematical commonality of several complexity metrics,
not to defend them individually.

1. SPECIFIED COMPLEXITY MODELS
A specified complexity model is a function of an obser-
vation X taking values in some space X , where X is
distributed according to probability distribution p(x)
(denoted as X ∼ p). It contains two components, one
measuring the likelihood of the observation under p (re-
ferred to as the complexity term for historical reasons),
and another component that measures the specificity
of the observation, according to a specification function
ν(x). This function should be computable or capable of
being estimated given x and should be definable indepen-
dently of the particular observation x, to avoid cherry-
picking and fabrications. This can be done by defining

the function prior to observing x, but need not be, as
long as the function itself is not conditioned on x when
computing the value for x. In other words, specification
functions of the form νx(x) or ν(x|x) are invalid. This
danger of fabrication is a general vulnerability of statis-
tical hypothesis testing, since one could inappropriately
choose the significance level α (acting as the specification
function) in response to the observed test statistic value,
or even define a test statistic Tx(X) = c · 1{X = x}
(where 1{·} denotes the indicator function, which equals
1 when the argument evaluates to true, and 0 otherwise)
that always assigns a large value c to the particular x
observed and zero to all other possible observations, lead-
ing to the smallest possible critical region, a singleton
set containing only the observation itself. If the danger
of fabrications forces us to reject specified complexity
hypothesis testing then we must also reject many other
statistical hypothesis tests, which all suffer from the same
vulnerability.

1.1 Common Form and Canonical Models
We begin with a few definitions.

Definition 1 (ν(X )). For any integrable nonnegative
specification function ν : X → R≥0, define ν(X ) as
follows:

ν(X ) :=


∫
X ν(x)dx if continuous,∑
x∈X ν(x) if discrete,∫
X dν(x) in general.

(1)

Definition 2 (Common Form and Kardis). For any
probability distribution p(x) on space X , any strictly
positive scaling constant r ∈ R>0 and any nonnegative
function ν : X → R≥0, we define a common form model
as

SC(x) := − log2 r
p(x)

ν(x)
(2)

with specified complexity kardis κ(x) = r(p(x)/ν(x)).

Definition 3 (Canonical Specified Complexity Model).
Any common form model constrained such that ν(X ) ≤ r
is a canonical specified complexity model.

It should be stated explicitly that the constraint for
canonical models is what allows us to bound the proba-
bility of observing extreme specified complexity values,
and that ideally ν(X ) = r, which allows us to obtain
tight bounds. In addition, the scaling constant r should
not depend on x. To define a canonical model, it suffices
to define the kardis1 κ(x) and ensure that the constraints
are satisfied for r, p, and ν. As a useful example, given
any kardis κ(x) from a canonical specified complexity

1From Greek kardiá (heart) and Ilocano kardis (pigeon pea,
which is a small component contained in a larger pod).
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model, we can define an augmented kardis (and thus
augmented model) that incorporates a significance level
term within the model. We do so as follows.

Definition 4 (rα, κα(x), and SCα(x)). Given κ(x) =
r(p(x)/ν(x)) from any canonical specified complexity
model and any significance level α ∈ (0, 1], define

rα :=
r

α
,

κα(x) := rα
p(x)

ν(x)
, and

SCα(x) := − log2 κα(x)

= SC(x) + log2(α).

It is easy to verify that any SCα(x) thus defined is
also a canonical specified complexity model, since rα ≥ r
by the condition on α, which implies ν(X ) ≤ rα. Such
significance level models will allow us to take arbitrary
canonical form specified complexity models and use them
directly for α-level hypothesis testing (Theorem 3).

Much like exponential family distributions have di-
verse surface forms yet can all be reduced to a single
common form, existing specified complexity models, such
as algorithmic specified complexity and semiotic specified
complexity, can also be reduced to the common form of
Definition 2. With little (and sometimes no) additional
work, we can define canonical variants of these models.
Having one canonical form is important for many rea-
sons, not least of which because it allows us to prove
general properties of many specified complexity models
simultaneously, such as

Corollary 1. (Level-α Property for Specified Complexity
I) Given X ∼ p and significance level α ∈ (0, 1] and any
canonical specified complexity model with kardis κ(X),

Pr (κ(X) ≤ α) ≤ α.

We will discuss this result in Section 3, and give a
proof in the Appendix.

1.2 Specified Complexity Model Recipe
We now give a recipe constructing new specified com-
plexity models for any finite discrete X . For x ∈ X ,
define D as the set of all x such that x is the product of
some process of interest. Let γ(x) be any bounded func-
tion on X quantifying some aspect of objects in D (such
as functional coherence, organization, irreducible com-
plexity, meaning, relative compressibility, etc.), where
larger values give stronger evidence of being produced
by the process of interest. Thus defined, γ acts as a
featurizer for x, outputting a scalar-valued feature cor-
related to its true label, the label being 1{x ∈ D}. We
have assumed that larger values of γ indicate stronger
correlation with membership, but if anti-correlated, we
can define γ(x) := −f(x) or γ(x) := (f(x) + ε)−1, where

f(x) is the original function and ε ≥ 0 is some small
constant used to prevent undefined values. If needed,
we can then rescale γ(x) into the range [0, 1] by using
zero-one scaling:

ν(x) :=
γ(x)− γmin

γmax − γmin
(3)

where we have defined γmin := minx′∈X γ(x′) and γmax

analogously. If γ already has the desired range does not
need rescaling, simply define ν(x) := γ(x).

Define r := ν(X ) as a normalizing constant (or set
r to any real-valued number exceeding this quantity).
Given any proposed probability distribution p defined
on X and following Equation 2, we define the generic
specified complexity kardis as

κ(x) := r
p(x)

ν(x)
(4)

and the new specified complexity model as the negative
log of the kardis, namely

SC(x) := − log2 κ(x). (5)

Having verified that p is a probability distribution on X ,
ν is a nonnegative function on X where ν(X ) ≤ r, we see
that this recipe produces canonical specified complexity
models.

2. STATISTICAL HYPOTHESIS TESTING
Statistical hypothesis testing [17–19] allows one to reject
a proposed probability distribution (null distribution) as
an explanation for a particular observation, whenever
observations of that kind have low probability under the
distribution. There are two broad classes of statistical
tests [20, 21], those based on Neyman-Pearson hypothe-
sis testing and those based on Fisherian p-values. These
classes of tests have different forms, origins, and even
statistical philosophies, but underlying both is the com-
mon idea that when collections of observations have low
probability under a null distribution, rejecting that distri-
bution as an explanation for the data leads to beneficial
outcomes. Neyman-Pearson tests establish a procedure
with good long-term statistical properties, controlling
both false-positive and false-negative errors (Type-I and
Type-II), whereas Fisher’s p-values allow for the rejection
of a null distribution without having to consider an alter-
native hypothesis. Hybrid tests [19, 20] can be formed
by first choosing a significance level α, then computing a
p-value and rejecting the null distribution if it is below
α. Such tests, if performed consistently and repeatedly,
will reject the null hypothesis with probability not ex-
ceeding α in the cases when it actually holds, so they
are often used as a “best-of-both-worlds” approach in
practice.2 In general, a p-value is the smallest α at which

2However, others view this as a “worst-of-both-worlds” method.
See, for example, the discussion in Lew [20].
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we would reject the null hypothesis [22]. Reporting a test
result using a p-value allows the reader to compare that
value to any significance level they deem appropriate,
leaving to them the decision to reject or not reject based
on the observed data [19]. Because of their popularity
and utility, we will focus our discussion of statistical hy-
pothesis testing to p-values and the level-α tests derived
from them, as described in Casella and Berger (Section
8.3.4) [19].

The reader should be aware, however, of the statis-
tical controversy surrounding p-values (and statistical
hypothesis testing more generally [23]), such as abuses
like “p-hacking” and the potential for high false discov-
ery rates even under ideal conditions [24]. The false
discovery rate measures the proportion of times one is
wrong when rejecting the null hypothesis, even if one
rarely chooses to reject it. While the α-level controls
how often you reject the null hypothesis when it actu-
ally holds (thus controlling Type-I error), it could be
the case that you almost never reject when it does not
hold (and you should), and thus the ratio comparing
the number of times you incorrectly reject it to the total
number of times you reject it overall could be quite large
even for small α-levels. P-values are therefore imperfect
and ubiquitous tools, with the potential for abuse or
mishandling; they should be handled with the care and
attention required for tool use in general.

2.1 P-Values
Given a set of observations Xn = {X1 = x1, . . . , Xn =
xn}, we need some way of measuring how likely observa-
tions of this type are under the proposed null distribution.
If the outcome is probable under the distribution, we
have no reason to reject it as an explanation for the data;
if the observed data (and outcomes like it) are sufficiently
unlikely under the null distribution, then we reject it as
an explanation for the data. To do so, one needs to first
define a test statistic T , which is a real-valued function
of Xn, and a significance level α, which defines the level
of improbability for which we will reject the null hypoth-
esis. The test statistic is typically some statistic of the
observed data (hence the name), such as the average
of the observations, the number of heads in a series of
coin flips, or some other property of the data. Although
typically n > 1 (i.e., the test statistic is a function of
more than just one observation), for simplicity we will
consider the special case of n = 1, which will also allow
for easier comparison with specified complexity models
later.

Different hypothesis tests lead to different definitions
of “extreme” test statistic values. For some tests, large
T (X) are considered extreme and will lead to rejection,
whereas in other cases small T (X) will do so. Other tests,
such as two-tailed tests, reject large magnitude |T (X)|
values. A p-value, denoted pval(x), is defined as the

probability (under the null distribution) of the set of all
observations that have test statistics at least as extreme
as the value T (x) observed. Assuming that large test
statistic values are extreme, they can be defined formally
as follows:

Definition 5 (P-Value for Large Extreme Test Statis-
tics). For X ∼ Pθ,

pval(x) = Pθ (T (X) ≥ T (x)) .

Similar definitions can be given for small extreme statistic
values, or large magnitude extreme values.

Under p-value statistical testing, the null distribu-
tion is rejected as an explanation for the data when-
ever the p-value is less than the specified significance
level. The following property holds for p-value statistical
tests, whenever testing for large or small extreme test
statistic values, since they are distributed according to
a Uniform-(0, 1) distribution whenever the test statistic
has a continuous distribution [22]:

Definition 6 (Level-α Property). Given X ∼ Pθ, we say
the level-α property holds for random variable Y := f(X)
if

Pr(Y < α) ≤ α.

We note that p-values are themselves random vari-
ables, being functions of the random variable X. By the
level-α property, the probability under the null distribu-
tion of seeing a p-value of level α is therefore no greater
than α. P-values for which the level-α property holds are
called valid [19]. Because small p-values are by definition
unlikely under the proposed distribution, observation of
them may justify rejecting the distribution in question as
an explanation for the data. Surprisingly, we can show
this level-α property also holds for canonical specified
complexity models, and so the same set of implications
follow for such models.

2.2 P-Value Specified Complexity Models
A p-value statistical test can be cast into specified com-
plexity model form by simple algebraic manipulation.
Begin with any such test that rejects a null distribution
when the p-value is smaller than α, namely,

pval(X) < α. (6)

If we rearrange the sides of the inequality and take nega-
tive logs, we obtain

− log2

(
pval(X)

α

)
> 0, (7)

which is a common form specified complexity model test
(letting r = 1), though not a canonical one (since α
is not normalized over X ). However, for every test of
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this form there exists an equivalent canonical specified
complexity model test on a new two-element space, X̃ ,
defined as follows.3 Let X̃ := {1, 0}, where the first
element is identified with the extreme region of X , and
the second, with the complement of that region. The
null distribution, test statistic, and original observation
induce the following probability distribution on X̃ :

p̃(x̃) :=

{
pval(X) if x̃ = 1,

1− pval(X) if x̃ = 0.
(8)

Since the p-value is the probability of observing such
extreme values under the null distribution, the event of
observing X̃ = 1 has this same probability under p̃. Thus,
the original test is transformed into an equivalent test of
a weighted coin flip (for a Bernoulli random variable X̃)
to see if the outcome of heads is likely given its weight.
For this new test the null distribution being directly
tested is no longer the original distribution, but is now
the induced Bernoulli distribution, p̃, with parameter
pval(X). This new distribution serves as the complexity
component of the specified complexity model. It is a
proxy for the original null distribution, and rejecting it
results in rejecting the original distribution as well (and
vice versa).

The α term can take one of two interpretations: it can
be interpreted as either a specification function, which
assigns probability mass α to X̃ = 1, or as a number of
replicational pseudo-trials r = 1/α, which are additional
chances of seeing the event in question [4]. We will
discuss both interpretations shortly.

Returning to the original non-canonical p-value spec-
ified complexity model on X , it follows directly from the
level-α property that

Pr

(
− log2

(
pval(X)

α

)
> 0

)
≤ α. (9)

Furthermore, we can prove a conservation result for these
models, for any desired α-level:

Theorem 1. (Conservation of P-Value Specified Com-
plexity) Under the same conditions as Definition 6, for
X ∼ Pθ and α ∈ (0, 1],

Pr

(
− log2

(
pval(X)

α

)
> b

)
≤ α2−b.

Two-mass Interpretation Consider the ratio pval(X)/α.
As we have seen, the pval(X) term is the probability mass
of the extreme region determined by the test statistic
and null distribution. The α term can be interpreted
as a probability mass, being the mass under a different
distribution (a specification distribution) for the same

3I have been told this formulation formally corresponds to a
coupling [25].

observation of “heads,” using the weighted coin analogy.
We can associate α with a default level of “fit” under the
specification distribution. When the heads outcome has
a higher probability under this alternative distribution
than under the null distribution, we reject the null dis-
tribution in favor of the alternative. The test condition
pval(X) < α is equivalent to

pval(X)

α
< 1, (10)

so we are essentially performing something like a modified
likelihood ratio test under this interpretation, with the
caveats that we are not considering maximization over
a constrained and an unconstrained class of parameters,
nor are we allowing for general c cutoff values.

Pseudo-trials Interpretation A second interpretation of
the α term involves moving it from underneath the p-
value, to give a quantity r = 1/α ≥ 1. Returning again
to the weighted coin analogy, we can view r as the total
number of coin flips we have, which gives us more chances
of seeing the event in question (namely, a flip that lands
on heads). It is a number of pseudo-trials, which can be
thought of as hallucinated coin flips. We have observed
heads, and we want to know if that outcome was likely
given the number of flips r and the weight on heads
(probability pval(X)). Whenever r is an integer, we have

pval(X)

α
= r · pval(X) = E[Y ] (11)

where Y ∼ Binom(r, pval(X)) (i.e., Y is a binomially-
distributed random variable, with parameters N = r
and p = pval(X), and with expected number of heads
equal to Np = r · pval(X)). Since we reject the null
hypothesis whenever pval(X)/α < 1, we see that the test
is equivalent to testing if the expected number of heads
is fewer than one under the proposed distribution. If it
is, we reject the null distribution as an explanation for
the data, since we observed a heads outcome.

Under either interpretation, we can see that p-value
tests are equivalent to specified complexity model hy-
pothesis tests. Furthermore, for any specific p-value
test there exists an equivalent two-element canonical
specified complexity model test. Taking the two-mass
interpretation, define ν̃(X̃ = 1) := α, and we see that
testing

pval(X) < α (12)

is equivalent to testing

− log2

(
p̃(X̃ = 1)

ν̃(X̃ = 1)

)
> 0, (13)
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on the two-element space X̃ , with p̃(X̃ = 1) implicitly a
random variable of X. Under the pseudo-trials interpre-
tation, define ν̃(X̃ = 1) := 1 and r := 1/α, so that we
obtain the equivalent test

− log2

(
rp̃(X̃ = 1)

)
> 0, (14)

again defined in terms of a random variable X̃ ∼ p̃.
For either definition of ν̃, letting ν̃(X̃ = 0) = 1 −

ν̃(X̃ = 1), we have ν̃(X̃ ) = 1 ≤ r. Because of this, we see
that both specified complexity models in the new tests
are canonical specified complexity models. Thus, p-value
testing is reducible to canonical specified complexity
model testing on a new space X̃ .

3. MAIN RESULTS
Having defined canonical specified complexity models
and shown their relationship to p-value statistical tests,
we next state a series of results for this family of models,
with full proofs given in the Appendix. We demonstrate
that one can upper bound the probability of observing
extreme specified complexity values for arbitrary prob-
ability distributions, without needing the distribution
in question to have a tractable analytical or parametric
form, in contrast to traditional p-values. This feature is a
consequence of simultaneously observing a low probabil-
ity value under the distribution and a high specification
value under the specification function: since the spec-
ification values are normalized, few elements can have
large values. Although many elements can have low prob-
ability values (thus making the occurrence of observing
any such low-probability event probable, given enough of
them), few can have low probability while being highly
specified. Because specified complexity is an information
quantity (namely, it is logarithmic in form), the resulting
bound takes the form of a one-sided conservation result.

3.1 Canonical Conservation Bound
Theorem 2 (Conservation of Canonical Specified Com-
plexity). Let p(x) be any discrete or continuous prob-
ability measure on space X , let r ∈ R>0 be a scaling
constant, and let ν : X → R≥0 be any nonnegative inte-
grable function where ν(X ) ≤ r. Then

Pr

(
− log2 r

p(X)

ν(X)
≥ b
)
≤ 2−b, (15)

where X ∼ p.

Remark. Any canonical specified complexity model will
satisfy the conditions of the above theorem by definition,
so it holds for all such models.

Let us pause to understand the import of Theorem 2.
Given an observed specified complexity value SC(x), the
key question becomes:

What is the probability of observing a specified
complexity value at least as extreme (‘special’)
as SC(x)?

Theorem 2 allows us to upper bound this probability
by 2−SC(x). This result is somewhat surprising, since
it holds for arbitrary discrete or continuous distribu-
tions with arbitrary tail behavior, without making any
strong parametric assumptions on the form of p. To
gain intuition as to why specification functions bound
tail behavior, consider what it means to have a speci-
fied complexity value at least as extreme as SC(x). By
Definition 3, we have

SC(x) = − log2 r
p(x)

ν(x)
. (16)

Thus, for x′ ∈ X , SC(x′) ≥ SC(x) implies p(x′) ≤ p(x)
or ν(x′) ≥ ν(x) (or both). While many x′ elements in
X can have p(x′) ≤ p(x), which could even make the
occurrence of some small probability event all but certain
(as is true for uniform distributions on large spaces), it
cannot be the case that an arbitrarily large proportion
may have ν(x′) ≥ ν(x), since ν(X ) ≤ r. Thus, increasing
the proportion of large ν values increases the scaling
constraint r, which implies a larger kardis rp(x)/ν(x)
and smaller SC(x) value, which controls the tightness of
the bound.

If we try to adversarially devise p and ν functions
so as to violate the bound, we can see that the integra-
tion constraint still protects us, through the following
informal argument. For any observed SC(x) value from
a canonical specified complexity model, we can attempt
to choose p and ν such that the probability

Pr(SC(X) ≥ SC(x)) (17)

is larger than the bound given by Theorem 2. To ac-
complish this, we must make this probability large (i.e.,
a large proportion of p’s mass must reside on regions
where the SC values exceed SC(x)) and the bound
tight (i.e., the observed SC(x) must be large). This
gives us the best chance of violating the bound. To
address the first goal, we can make the probability of
the set of extreme values as large as possible by as-
suming that x = argmaxx′∈X p(x

′) and that such an
argmax exists. Then, p(x′) ≤ p(x) for all x′ ∈ X . Be-
cause of this, ν can remain constant or decay with p, as
long as p(x′)/ν(x′) ≤ p(x)/ν(x), which will guarantee
SC(x′) ≥ SC(x) for all x′ ∈ X , thus maximizing the
probability Pr(SC(X) ≥ SC(x)) by making it equal to
1.

To address the second goal, we assume the observed
SC(x) is as large as possible under the conditions already
established. In such a case, ν will have contours that
decay at exactly the same rates as the contours of p, by
the following argument. If ν decayed any slower (i.e.,
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there were some ν(x′) larger than absolutely necessary) r
would be larger than absolutely necessary, making SC(x)
smaller than need be, and thus violating our assumption
that SC(x) is as large as possible. If ν decayed any
faster than p, there would exist some x′ ∈ X with posi-
tive measure such that p(x′)/ν(x′) > p(x)/ν(x), which
would contradict our assumption that the probability
Pr(SC(X) ≥ SC(x)) is maximized. Because the con-
tours of ν follows those of p exactly at all points, this
makes ν a scaled copy of p, namely, ν(x) = cp(x). Max-
imizing SC(x) requires making rp(x)/ν(x) as small as
possible. Either we can minimize r or p(x)/ν(x) or both.
To minimize r, set r = ν(X ), its smallest possible value.
To minimize the ratio p(x)/ν(x) requires maximizing the
separation between values of p and ν, which means max-
imizing the scalar multiplier c. The multiplier must be
nonnegative, since ν is a nonnegative function (as is p).
The multiplier must also not equal 0, since SC(x) would
be undefined in that case. For any positive multiplier c
less than r,

r
p(x)

ν(x)
= r

p(x)

cp(x)
=
r

c
> 1. (18)

This would imply a negative SC(x) for all x ∈ X , mak-
ing the bound from Theorem 2 exceed 1, thus trivially
satisfying it. Therefore, we can assume c ≥ r. Further-
more, our integration constraint on ν implies the scalar
multiplier must not exceed r, since p integrates to one,
which implies

r ≥ ν(X ) = cp(X ) = c. (19)

Thus, the scalar multiplier must equal r. This implies
SC(x) = − log2(r/r) = 0. By Theorem 2, the bound
corresponding to SC(x) = 0 is Pr (SC(X) ≥ 0) ≤ 20 = 1,
so our bound is again satisfied even under this adversarial
case.

The addition of specification is what allows us to
control these probabilities. Considering probabilities in
isolation is not enough. While unlikely events can hap-
pen often (given enough elements with low probability),
specified unlikely events rarely occur. This explains why
even though every sequence of one thousand coin flips
is equally likely given a fair coin, the sequence of all
zeroes is a surprising and unexpected outcome whereas
an equally long random sequence of heads and tails is not.
Specification provides the key to unlocking this riddle.

3.2 Level-α Property for Specified Complexity
Tests

Several results follow from Theorem 2. One of these we
have already encountered, namely that canonical kardii,
like p-values, possess the level-α property that allows
them to bound the mass of extreme values under distri-
bution p. The following two corollaries show how this

applies to kardii and specified complexity values, respec-
tively, with proofs given in the Appendix. The second
result gives us a simple way to construct hypothesis tests
from canonical specified complexity models.

Corollary 1 (Level-α Property for Specified Complexity
I). Given X ∼ p and significance level α ∈ (0, 1], let κ(x)
be the kardis from any canonical specified complexity
model. Then

Pr (κ(X) ≤ α) ≤ α.

Corollary 2 (Level-α Property for Specified Complex-
ity II). Let SC(x) be any canonical specified complexity
model. Then for X ∼ p and significance level α ∈ (0, 1],

Pr (SC(X) ≥ − log2 α) ≤ α.

Corollary 2 gives us a practical hypothesis test for all
canonical specified complexity models, where we reject
the null hypothesis whenever test statistic T (x) (defined
as SC(x)) exceeds − log2 α. Table 1 gives cutoff values
for common α levels. As can be seen from the table,
observing specified complexity values exceeding ten bits
corresponds to an α-level of less than 0.001.

Table 1: Test statistic cutoff by α-level.

α T (x)

.1 3.33 bits
.05 4.33 bits
.01 6.65 bits
.001 9.97 bits
.0001 13.29 bits

α − log2 α bits

Augmented canonical specified complexity models
also possess the level-α property, and thus can also be
used to define hypothesis tests. We first state a more
general result (with proof given in the Appendix) that
allows us to demonstrate the property of such models as
a direct corollary.

Theorem 3 (α-Exponential Bound). Given X ∼ p, sig-
nificance level α ∈ (0, 1], and any augmented canonical
specified complexity model SCα(x) as defined in Defini-
tion 4,

Pr (SCα(X) ≥ b) ≤ α2−b.

Corollary 3 (Level-α Property for Specified Complexity
III). Let SCα(x) be any augmented canonical specified
complexity model as defined in Definition 4. Then for
X ∼ p and significance level α ∈ (0, 1],

Pr (SCα(X) ≥ 0) ≤ α.

Proof. Let b = 0 and invoke Theorem 3.
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In other words, the probability (under p) of observ-
ing positive values for an augmented canonical specified
complexity model with significance level α is no greater
than α.

3.3 Common Form Model Bound
Although by Definition 3 all canonical specified com-
plexity models are normalized such that ν(X ) ≤ r, we
can easily obtain a tail-bound for unnormalized common
form models using Theorem 2, with a full proof given in
the Appendix.

Corollary 4 (Common Form Model Bound). For any
common form model SC, where r and ν(X ) are as in
Definitions 1 and 2, we have

Pr (SC(X) ≥ b) ≤ 2−br−1ν(X ).

In the special case of r = 1, this simplifies to

Pr (SC(X) ≥ b) ≤ 2−bν(X ).

With the above corollary one can make use of non-
canonical specified complexity models, since the size of
the specification function can be controlled directly in
the bound. This gives a result that may be applied to
previously published specified complexity models without
needing to first define canonical form variants.

3.4 Combining Models
Given that multiple specified complexity models exist,
and others may be defined using the recipe in Section 1.2,
one naturally wonders if two or more canonical mod-
els can be combined to produce yet another canoni-
cal model. Namely, given specified complexity models
SC1(x), . . . , SCm(x), can we form a combined model
SC ′(x) subject to the bounds given previously? Assume
all models share a common p(x) function, so that there
is a single random variable X ∼ p for all SCi. There are
two simple ways to create a combined model: 1) combine
specification functions νi(x) into a hybrid specification
function ν′(x) (with which a canonical kardis can be
defined), or 2) average the specified complexity models
together. We give bounds for both types of combined
models, where the first results in a new canonical model
and the second is no longer a canonical model since
the product probability function on the single random
variable X no longer integrates to 1 in general. For
the second type of combined model, we give a looser
bound on the probability of observing extreme combined
specified complexity values under distribution p.

Theorem 4 (Combined Models I). Let
SC1(x), . . . , SCm(x) be canonical specified com-
plexity models with corresponding specification functions
ν1(x), . . . , νm(x), scaling constants r1, . . . , rm, and

common probability function p(x). Define a set of
mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},

such that
∑m
i=1 λi = 1. Then for any such Λ and defining

r′ := maxi ri,

SC ′(x) := − log2 r
′ p(x)∑m

i=1 λiνi(x)

is a canonical specified complexity model.

Theorem 5 (Combined Models II). Let
SC1(x), . . . , SCm(x) be canonical specified com-
plexity models sharing a common probability function
p(x). Define a set of mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},

such that
∑m
i=1 λi = 1. Then for any such Λ,

Pr

(
m∑
i=1

λiSCi(X) ≥ b

)
≤ m2−b.

4. ADDITIONAL RESULTS
In this section we show how several existing specified
complexity models, such as algorithmic specified com-
plexity [5], irreducible complexity [26], and functional
information [27], can be recast into common form, with
close variants defined as canonical specified complexity
models. Doing so allows us to prove conservation results
bounding the probability of observing extreme values un-
der those models. As canonical models, they can also be
used to form statistical hypothesis tests as in Section 3.2.
Demonstrating the commonality of such a diverse group
of models highlights the utility of the canonical model
abstraction, and suggests that any model seeking to
solve similar problems will converge to a form similar to
canonical specified complexity.

4.1 Semiotic Specified Complexity
We begin with a form of specified complexity outlined
in Dembski (2005) [4], which was proposed as an im-
provement and mathematical refinement to the model
suggested in Dembski (1998) [1]. Although recent work
in algorithmic specified complexity seems aimed at super-
seding this model [5, 6], we include it here for historical
purposes. As shown in the Appendix, semiotic speci-
fied complexity is a common form model (though not
canonical), so we can invoke Corollary 4 and obtain the
following bound, along with a conservation bound on a
closely related canonical variant.

Corollary 5 (Bounds on Semiotic Specified Complexity
(SSC)). Let p(x) be any probability distribution on a
finite discrete space X and define

SSC(x, s) := − log2

[
10120ϕs(x)p(x)

]
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where ϕs(x) is the number of patterns available to semi-
otic agent s which have descriptive complexity no greater
than that of x. Then for X ∼ p, we have

Pr (SSC(X, s) ≥ b) ≤ 2−b10−120
∑
x∈X

ϕs(x)−1.

Additionally, whenever |X | ≤ 10120, the following con-
servation bound holds:

Pr (SSC(X, s) ≥ b) ≤ 2−b.

4.2 Algorithmic Specified Complexity
As mentioned previously, the conservation result from
Ewert et al. [6], which initially inspired the work here,
follows as a corollary of the general result given in Theo-
rem 2. Algorithmic specified complexity is a canonical
specified complexity model, allowing us to apply Theo-
rem 2 directly.

Corollary 6 (Conservation of Algorithmic Specified
Complexity (ASC)). For discrete space X , define

ASC(x, c, p) := − log2 p(x)−K(x|c),

where K(x|c) is the conditional Kolmogorov complexity
of x given context c. Then for X ∼ p,

Pr (ASC(X, c, p) ≥ b) ≤ 2−b.

Proof. Let r = 1 and ν(x) = 2−K(x|c), so that

ASC(x, c, p) = − log2 r
p(x)

ν(x)
. (20)

Because ν is a probability measure on X (being a uni-
versal algorithmic probability distribution), this implies
ν(X ) = 1, making it less than or equal to r. The result
then follows from Theorem 2.

Remark. Under the conditions of Corollary 6, given
any test statistic T (x) = ASC(x, c, p), we obtain

Pr (ASC(X, c, p) ≥ T (x)) ≤ 2−T (x). (21)

Thus, one can reject the null hypothesis at all significance
levels α ≥ 2−T (x).

4.3 Defining Quantitative Irreducible Complexity
Irreducible complexity as defined by Behe [26] describes

...a single system which is composed of sev-
eral well-matched, interacting parts that con-
tribute to the basic function, and where the
removal of any one of the parts causes the
system to effectively cease functioning.

In his book [26], Behe proposes irreducible complexity
as an indicator of intentional design by intelligent agents.
Behe further clarified the definition, adding [28]:

An irreducibly complex evolutionary path-
way is one that contains one or more unse-
lected steps (that is, one or more necessary-
but-unselected mutations). The degree of
irreducible complexity is the number of unse-
lected steps in the pathway.

and

Demonstration that a system is irreducibly
complex is not a proof that there is absolutely
no gradual route to its production. Although
an irreducibly complex system can’t be pro-
duced directly, one can’t definitively rule out
the possibility of an indirect, circuitous route.
However, as the complexity of an interacting
system increases, the likelihood of such an
indirect route drops precipitously.

The somewhat qualitative nature of the original def-
inition has typically led to an ‘all-or-nothing’ view of
irreducible complexity [29, 30]. It can be argued, however,
that the original formulation more naturally suggests a
continuum of ‘irreducibility.’ We attempt to provide such
a quantitative, non-binary formulation of irreducible com-
plexity here. We make no claim that this is an optimal
or otherwise definitive model, but is offered simply as
a relevant application of the canonical view of specified
complexity.

Within the definitions and clarifications above, a few
zero-one indicators of irreducible complexity are present,
such as the need for ‘several’ (more than two) parts, the
parts being ‘well-matched’ and ‘interacting’, and all parts
contributing necessarily to the basic (core) function of the
system such that the removal of any of them also removes
that functionality. In addition to these indicator features,
there are scalar-valued features, such as the complexity
of the system (e.g., the number of ‘unselected steps’,
length of ‘circuitous route[s]’), the count of interacting
components, and the functional specificity of such ‘well-
matched’ interacting parts. Thus, irreducible complexity
contains a complexity component (complex system with
several interacting parts, all routes must be circuitous
with unselected steps) and a specification component
(parts contribute to an identifiable function, the core
is irreducible, all parts are well-matched). The first
aspect ensures irreducibly complex systems are unlikely
under proposed distributions governing the emergence
of biological systems, and the second captures aspects
of human engineered systems, correlating irreducible
complexity with intentional design.

Following Behe, let us say a system is irreducible
if it contains at least three well-matched components
that contribute necessarily to a core function, such that
removal or mutilation of any of the components causes
the system to cease functioning with respect to the core
function. More formally, given a finite discrete space
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X , a modular system x ∈ X containing components
y1, . . . , y` (with each yi being drawn from a shared space
Y of possible options), and a core function g : X → [0, 1],
let

Cg(x) = {y1, . . . , yk} (22)

be defined as the irreducible core of the system relative to
function g, such that g(Cg(x)) > 0 and g(Cg(x)\{yi}) =
0 for all yi ∈ Cg(x) (i.e., the core can perform the func-
tion and removing any component from the irreducible
core causes the function to cease, which is identified here
by a functional value of zero).4 If neither x nor any
subset of x can perform the function, the irreducible
core is simply the empty set. Our definition considers
the components of x as they are; we do not allow for
modifications to the components (such as fusing two
components together or altering one so that it performs
the role of two components while eliminating the second).
We implicitly assume interactions among core compo-
nents remain as they were in x, but will consider changes
in interaction patterns that might preserve core function
when later measuring interaction specificity. We assume
function g is scaled so that maximum function occurs
when g(x) = 1 and g(x) = 0 corresponds to no detectable
core function activity. To make estimation easier, the
space X might be restricted to some manifold of the
true space, such as the subspace of systems containing k
components or fewer (where k corresponds to the number
of core components in x).

For a configuration x with irreducible core Cg(x), we
can derive the following features from Cg(x) to form
specification function ν. Let k be the number of compo-
nents in the core, which will act as a scalar multiplier
for our function, so that when there are many necessary
components, the specification function will take larger
values. Let m be the number of functionally relevant
interactions between the components of Cg(x), where an
interaction is functionally relevant if removing it causes
a change in the value of g(x). Interactions that do not
contribute to or otherwise cause detectable differences
in the core function are functionally irrelevant, and are
thus excluded.

In addition to the number of interacting components,
our specification function will also include terms for part
specificity and interaction specificity, corresponding to
the ‘well-matched’ qualifier of Behe’s original definition.
Well-matched components of a system are often an indica-
tion of intentional purpose, allowing humans to perceive
a coherent whole from many separate pieces, where the
wholeness suggests a higher-level intentional cohesion or
concept. Figure 1 shows how strong interface matching

4Note, this implicitly assumes closure of the irreducible core op-

eration within the space X , such that X also contains any system

that could be constructed from x’s components or their alterna-
tives.

Many

Whole

Many Whole

Figure 1: Whole vs. Many. Tight interface coupling suggests con-
nection and coherent wholeness. When interfaces are not tightly
matched, we perceive parts as individual items rather than a unified,
coherent whole. doi:10.5048/BIO-C.2018.4.f1

is suggestive of cohesion. In the figure, the left hand
side contains two blue-tinted sub-figures. At the top,
we perceive two separate pieces, whereas the image on
the bottom is perceived as a unified whole, even though
it is also comprised of two separate pieces, albeit with
well-matched interfaces connecting them. On the right,
there is another contrasting pair of peach-tinted images,
where the pieces without matching interfaces are quickly
perceived to be separate entities (Many), whereas the
pieces sharing matching interfaces are perceived as a
single ring (Whole), rather than as the two separate
pieces that comprise it. In both cases, the well-matched
interfaces strongly suggest cohesion, which is one of the
ways humans identify functional wholes rather than col-
lections of individual pieces. At minimum, they signal a
correlation that might be the result of a common cause
or top-down, intentional coordination (especially when
resulting in functional systems) [31]. Furthermore, well-
matched components contribute to the improbability of
a configuration by limiting the number of viable alter-
native options. Thus, they contribute simultaneously to
the complexity and specificity of a system.

For each component yi in core Cg(x), let w(yi) be the
proportion of components from the space Y of possible
options that maintain core function when replacing yi in
the system, namely,

w(yi) :=
|{a : a ∈ Y, g(Cg(xyi,a)) > 0}|

|Y|
, (23)

where xyi,a denotes the configuration that replaces com-
ponent yi with component a, and Y denotes the subspace
of possible alternate components (e.g., a component li-
brary, lexicon, or alphabet). Define

γ1(x) :=
∏
i

1

w(yi)
(24)

as the product of the reciprocal of all w(yi) proportions,
so that when parts are very specific within the system
(not many alternatives maintain function), the w(yi) pro-
portions are small and thus the γ1 value is large. Under
the conditions that yi ∈ Y for all yi and assuming a finite
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IV

I

II

III

VI

V

Figure 2: Components and their relevant interaction surfaces.
Objects I-VI are components of a system, and each subdivision
(colored box) corresponds to a functionally relevant interaction sur-
face, such that component I has three such surfaces, component
II has one, and component V has an interaction surface cardinal-
ity of four. Each surface can possibly interact with one or more other
surfaces, represented as links (black lines) between surface nodes.
doi:10.5048/BIO-C.2018.4.f2

and discrete Y space, the proportions w(yi) will always
be nonzero, and thus γ1 will always be well-defined.

To measure interaction specificity, we consider for
each yi the functionally relevant interaction surfaces and
the proportion of possible interactions that maintain core
function. Let the interaction surface cardinality be the
number of distinct ways a component can interact with
other components in the space such that the interactions
have different effects on the core function. For example,
if a component can be attached to another at n possible
points, but these only result in two possible functional
level outcomes (say, high or low function), then the inter-
action surface cardinality is two (and not n). Thus, the
interaction surface cardinality measures the number of
interaction behaviors of a component, rather than merely
the number of raw possibilities for interaction. Figure 2
represents this graphically, with components I-VI each
having some number of functionally relevant interaction
surfaces (behaviors), where a ‘surface’ can be thought of
as some (possibly noncontiguous) region which results in
similar functional performance when attached to any of
the points within that region. In the figure, component I
has three distinguishable interaction surfaces (and thus
an interaction surface cardinality of 3), and interacts
with component III, itself having an interaction surface
cardinality of 2. Interactions are represented as black

links within the figure, joining interaction surfaces of
different components, which are represented as colored
boxes.

For each interaction j, let uj be the proportion of all
alternative interactions (including itself) which do not
eliminate core function, namely,

uj :=
|{l : l ∈ B, g(Cg(xj,l)) > 0}|

|B|
, (25)

where B is the set of all possible interactions and xj,l
represents system x where interaction j has been replaced
by a new interaction l, connecting two other surfaces.5

Thus, uj measures the proportion of possible links that
can be swapped for interaction j without eliminating
core function. One can change the way two components
interact with each other (by altering which interaction
surfaces are connected), swap one of the components
for a different one, or change the pair of interacting
components for a different pair. All these possibilities
are captured by uj . Define

γ2(x) :=
∏
j

1

uj
(26)

as the product of the reciprocal of all uj proportions, so
that when interactions are very specific this value will
be large.

Given k, m, γ1(x), and γ2(x) we define the irreducible
specificity function ν as follows.

Definition 7 (Irreducible Specificity Function).

ν(x) := 1{k ≥ 3} · kλ1 ·mλ2 · γ1(x)λ3 · γ2(x)λ4

where k is the number of irreducible core components,
m is the number of functionally relevant interactions
among core components, γ1(x) is the part specificity
of core components, γ2(x) is the interaction specificity
for core component interactions, and 1{k ≥ 3} denotes
the indicator function that equals 1 when k ≥ 3 and
0 otherwise. The variables λ1, λ2, λ3, λ4 ∈ [0,∞) are
hyperparameters controlling the relative contributions
of each element to ν(x). Default values are λ1 = λ2 =
λ3 = λ4 = 1.

Definition 8 (Irreducible Specificity Scaling Constant
r).

r :=
∑
x′∈X

ν(x′)

where ν is the irreducible specificity function of Defini-
tion 7, 9, or 10.

5It should be stated explicitly that the connections are abstract
interactions, not necessarily physical attachments. We use the lan-
guage of physical attachments and surfaces as visualization tools,

not as literal descriptions, though the abstract connections can in
fact be physical attachments at times.
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It should be noted that any decision to expand the
space X which results in ν(x) values that are some scalar
multiple larger (or smaller) than they should be will be
taken care of by the scaling action of r. For example,
let ν′(x) be the function for an unnecessarily large X ′
such that ν′(x) = kν(x), where ν(x) is the true value
for the correctly sized space X , r′ =

∑
x′∈X ν

′(x′), and
r =

∑
x′∈X ν(x′). Then,

r′

ν′(x)
=

∑
x′∈X ν

′(x′)

ν′(x)
(27)

=

∑
x′∈X kν(x′)

kν(x)
(28)

=

∑
x′∈X ν(x′)

ν(x)
(29)

=
r

ν(x)
(30)

which will hold for any nonzero scalar multiple k.

For the complexity component of our specified com-
plexity model, we take the negative base-2 logarithm of
the probability of x under some proposed distribution
induced by the generative processes under considera-
tion, namely, − log2 p(x), were p is the proposed distri-
bution. Historically, irreducible complexity has been
considered primarily for biological phenomena, though
the concept may be applicable to technological systems as
well [30, 32]. For biological systems, one will have some
probabilistic model that attempts to explain the emer-
gence of the system as a result of process acting in nature.
Although the true distribution of nature is unknown (and
possibly unknowable), one might estimate p̂(x) using
frequentist methods or upper bound it by considering
only the appearance of some necessary subsystem, such
as a single gene sequence, for which the probabilistic
resources and selection landscape are much better un-
derstood. Quantitative irreducible complexity is always
relative to a proposed distribution, whether selectionist
or neutral. Proposing probability increasing mechanisms
including natural selection and self-organization requires
additional work, since irreducibly complex systems rule
out directly selectable pathways, leaving only indirect,
circuitous routes, and self-organization proposals require
empirical observations that the structures in question
self-organize under biologically realistic conditions. Be-
cause irreducibly complex systems cannot be optimized
by gradually improving the core function in an incremen-
tal manner, this feature may prove useful in ruling out
the probability increasing benefits of natural selection in
such scenarios.

Given an irreducible specificity function ν(x), we
formally define quantitative irreducible complexity

as

QIC(x) := − log2 r
p(x)

ν(x)
(31)

= − log2

[(∑
x′∈X

ν(x′)

)
p(x)

ν(x)

]
(32)

which equals −∞ when x is not an irreducible system
(i.e., does not have at least three components in its
irreducible core or does not have at least one interaction
among components).

This view of irreducible complexity as a special case
of specified complexity does not originate with us, but
has a much earlier history, being stated explicitly as early
as 2002 [3]:

Irreducibly complex biological systems ex-
hibit specified complexity. Irreducible com-
plexity is therefore a special case of specified
complexity.

While the general view presented here is not original,6

this present research is the first to formalize irreducible
complexity as a canonical specified complexity model,
and prove a corresponding conservation of information
result (see Corollary 7).

4.3.1 Simplified Variants
It may be desirable in some cases to use simplified ver-
sions of the irreducible specificity function that are easier
to estimate. To do so, one can change the λ hyperparam-
eters to zero to exclude the effect of any element from
the computation. Two examples are given.

Definition 9 (Simplified Version I). Setting Λ =
(λ1, λ2, λ3, λ4) = (1, 1, 1, 0), we obtain

ν(x) = 1{k ≥ 3} · k ·m · γ1(x)

where k is the number of irreducible core components, m
is the number of functionally relevant interactions among
core components, and γ1(x) is the part specificity of core
components.

The specification function of Definition 9 is the same
as that given in Definition 7, except that it omits the
interaction specificity term by setting its hyperparameter
value to zero. This term may be difficult to estimate at
times, yet it can serve as a signal of design activity (since
designers routinely create tightly-matching interfaces for
interacting parts), so should be included whenever possi-
ble. We can further simplify the specification function
by removing the part specificity term, as follows.

6For example, see Chapter 5 of Dembski’s No Free Lunch for

a quantitative approach for estimating the irreducible complexity
of a specific biological system [3].
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Definition 10 (Simplified Version II). Setting Λ =
(λ1, λ2, λ3, λ4) = (1, 1, 0, 0), we obtain

ν(x) = 1{k ≥ 3} · k ·m

where k is the number of irreducible core components
and m is the number of functionally relevant interactions
among core components.

Although this variant is easy to estimate, it does not
account for how well-matched components are, ignoring
both their part specificity and their interaction speci-
ficity. In all cases, we define the scaling constant r as in
Definition 8.

4.4 Conservation of Quantitative IC
Given a canonical form quantitative irreducible complex-
ity model as defined in Section 4.3 (under any settings
of the λ hyperparameters), it follows that one is unlikely
to observe large values for such models under any pro-
posed distribution p whenever p is the true distribution
generating the observations. We state this as a corollary
with proof given in the Appendix.

Corollary 7 (Conservation of Quantitative Irreducible
Complexity (QIC)). Let p(x) be any probability distribu-
tion on a discrete finite space X and define

QIC(x) := − log2 r
p(x)

ν(x)

where ν(x) and r are defined as in Section 4.3. Then for
X ∼ p,

Pr (QIC(X) ≥ b) ≤ 2−b.

Thus, the tail probability under proposed distribution
p of observing a quantitative irreducible complexity value
at least as large as that of an observation X = x is no
greater than 2−QIC(x).

4.5 Functional Information
Hazen et al. [27] introduced functional information I(EX)
to measure, in bits, the surprisal of observing a given
level of function for living and digital structures. The
authors define functional information as

I(EX) = − log2 F (EX), (33)

where, for a fixed function X, F (EX) is the proportion
of all possible configurations of the system exhibiting
a degree of function at least EX. Since we have used
X to denote a configuration random variable instead of
denoting a function, we will make the following change
of symbols to remain consistent with the notation in this
paper. Let g : X → R represent an arbitrary function, let
X be the space of all possible configurations of the system
and let x ∈ X be an element (a specific configuration)

within that space. We then translate from their notation
as follows:

g := X, (34)

Fg(x) := F (EX), and (35)

I[Fg(x)] := I(EX). (36)

Note that EX is some level of function which implicitly
has been observed for a configuration x. Having made
this translation, we will allow X to refer to the random
variable taking values of x ∈ X , and use our notation in
what remains.

Following Hazen et al. [27] and assuming that g in-
creases with increasing degrees of function, for discrete fi-
nite spaces we define Mg(x) := |{x′ ∈ X : g(x′) ≥ g(x)}|,
which gives

Fg(x) = Mg(x)/|X |. (37)

Functional information is a common form model for
discrete finite spaces X , which we state in the following
proposition and prove in the Appendix:

Proposition 1. Functional information I[Fg(x)] is a
common form specified complexity model with

p(x) = |X |−1,
ν(x) = Fg(x)−1, and

r = |X |.

In general it is not canonical, since ν(X ) may exceed r.

The fraction of functional configurations Fg(x) acts as
the specification component in the model. We will refer
to Fg(x) as the functional specificity of configuration
x with respect to g. Given that functional specificity
is a well-defined quantity that can be estimated from
observations, we may consider using it as the specification
component for a canonical specified complexity model.
We do so next.

4.5.1 Functional Specified Complexity
One of the drawbacks of the functional information model
is that while it tells you the relative size of the set of
functional level7 g(x), it cannot give any indication of
how likely one is to encounter such an extreme level of
function under a nonuniform distribution on configura-
tions. For example, assume you have a space of ten
thousand configurations where all but one have identical
levels of function for g, and one configuration achieves
a much higher level of function. Further, assume that
the configuration of high functionality is the one that is
almost always observed in the wild. Then I[Fg(x)] would
be large even though high levels of function are actually

7Here, as in other parts of the paper, we abuse notation slightly

so that g(x) denotes the level of function for configuration x with
respect to g.
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quite common for sampled configurations. This behavior
is by design, since functional information is measured
with respect to levels of function, not with respect to
individual configurations or their likelihoods. However,
it would be useful to allow for arbitrary nonuniform prob-
ability functions, so as to better capture how “special” a
given configuration is with regards to both its likelihood
and its particular level of function.8

Let Fg(x) be the functional specificity as defined
in Section 4.5 and let p(x) be any probability function
on discrete finite space X . We then define functional
specified complexity as follows.

Definition 11 (Functional Specified Complexity). For
function g, functional specificity Fg(x), and probability
function p : X → [0, 1], the functional specified complex-
ity kardis is

κ(x) := |X |(1 + ln |X |) p(x)

Fg(x)−1
. (38)

Given the functional specified complexity kardis, the
functional specified complexity (FSC) is thus

FSC(x) := − log2

[
|X |(1 + ln |X |) p(x)

Fg(x)−1

]
(39)

= − log2 r
p(x)

ν(x)
(40)

where we have defined r = |X |(1 + ln |X |) and ν(x) =
Fg(x)−1.

The relation between functional specified complexity
and functional information is as follows (proof given in
the Appendix).

Theorem 6 (Relation of FSC(x) to Functional Informa-
tion). For functional information I[Fg(x)] and FSC(x)
with probability distribution p, the following relation
holds:

FSC(x) = I[Fg(x)] + I(x) + c

where I(x) = − log2 p(x) is the surprisal of x under
distribution p and c = − log2 |X |(1 + ln |X |).

Theorem 6 establishes that functional specified com-
plexity is the sum of the functional specificity surprisal
of configuration x and its Shannon surprisal under dis-
tribution p (plus a constant that does not depend on x),
and therefore captures how “special” or “surprising” a
configuration is with regards to both its likelihood and
its level of function, as we had desired. We will next see
that this form is also a canonical specified complexity
model, which means the results from Section 3 hold for
them as well (with proof given in the Appendix).

8Another simple option is to measure functional specificity as

the proportion of observed configurations with functional level

greater than or equal to g(x), making it an estimated p-value
under the true distribution of nature.

Theorem 7 (Canonical Functional Specified Complex-
ity). For any probability distribution p(x) on discrete
finite space X , FSC(x) is a canonical specified complex-
ity model with

ν(x) = Fg(x)−1, and

r = |X |(1 + ln |X |).

4.6 Conservation of FSC
Corollary 8 (Conservation of Functional Specified Com-
plexity (FSC)). Define FSC(x) as in Definition 11.
Then for X ∼ p

Pr (FSC(X) ≥ b) ≤ 2−b.

Proof. The proof follows immediately from Theorems 2
and 7.

5. PRACTICAL CONSIDERATIONS
5.1 Estimating p(x)
As stated in Section 4.3, every canonical specified com-
plexity model is defined relative to a proposed distribu-
tion. This is the distribution rejected whenever anoma-
lously large specified complexity values are witnessed
for observations purportedly generated under that dis-
tribution. To compute the specified complexity kardis
for an observation x one does not require knowledge of
the full distribution p, but only knowledge of p(x), the
distribution value for that observation. Since one does
not typically have complete knowledge of the true gen-
erating distribution for non-artificial systems (or even
for sufficiently complex artificial systems), this value will
have to be estimated or upper bounded in most cases.
To upper bound p(x), simplifying assumptions are made
which would increase the likelihood of observation x rela-
tive to p(x). To estimate p(x) (which we denote as p̂(x))
for discrete combinatorial systems, one can sample from
the generative process and use frequentist methods to
estimate p̂(x) using the ratio of observations of x to the
number of samples, namely,

p̂(x) =
number of observations of x

total number of samples

which will approach the true value asymptotically under
standard mild statistical assumptions. For continuous
systems, nonparametric methods of density estimation
(such as kernel density estimation [33, 34]) may be used.
The sampling distribution used to estimate p̂(x) is the dis-
tribution that will be rejected or not given the specified
complexity test, so one must ensure the actual genera-
tive process of interest is used for generating the samples.
Similarly, if using analytical approximation methods to
bound the value p(x), one should ensure that the approx-
imation still reflects the true process reasonably well. As
a practical example, if one is attempting to reject an
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algorithmically produced system, one should compute
the likelihood under that algorithmic process, not under
some other distribution such as a uniform distribution
(which may be easier to compute but might lower the
odds of observing x), unless using that other distribu-
tion as a baseline for computing a minimum plausibility
requirement (see Section 6.1). However, if one cannot
compute or estimate the odds of a configuration x be-
ing produced by a particular probabilistic process, there
is no need to reject the process at all, since it never
actually rises to the level of an explanation. Probabilis-
tic explanations require probabilities; without attached
probabilities they remain conjectures. Claiming that a
probabilistic process boosts the likelihood of observing
some particular result remains without force unless one
can provide some actual numbers for this claim, namely,
what p(x) is under the proposed distribution induced by
the process (or some reasonable lower bound). Thus, the
burden of providing such estimates resides with those
proposing the probabilistic process as an explanation in
the first place.

As general advice, statistics and machine learning are
fields that specialize in estimating likelihoods and proba-
bilities for complex systems, and should be looked to for
guidance in this area. In other words, when attempting
to estimate specified complexity values for real-world
systems, first find a statistician.

5.2 Estimating r
Another difficulty that arises for canonical models is
the computation of r, the normalizing scaling constant,
which must be computed over the entire space X . In
some cases computation can be avoided entirely, such as
when using pre-normalized specification functions such
as probability distributions, which integrate or sum to 1
(resulting in r = 1). In the case of general specification
functions on discrete finite spaces, one can estimate r
using independent uniform random sampling on the space.
The law of large numbers guarantees that

1

n

n∑
i=1

ν(xi)
n→∞

= E[ν(X)] (41)

where the expectation is taken with respect to a uniform
random distribution on X , namely, X ∼ u(x). Thus,

1

n

n∑
i=1

ν(xi)
n→∞

=
1

|X |
∑
x∈X

ν(x). (42)

Define

r̂ := |X |

(
1

n

n∑
i=1

ν(xi)

)
(43)

where n is the number of independently identically dis-
tributed samples taken drawn from u(x), xi denotes the

ith sample, and |X | is the size of X . Then,

r̂
n→∞

= |X |

(
1

|X |
∑
x∈X

ν(x)

)
=
∑
x∈X

ν(x) = r. (44)

Thus, we can form an asymptotically consistent estima-
tor r̂ by independently sampling configurations on any
discrete finite space X uniformly at random and aver-
aging their rescaled observed ν function values. As the
number of samples increases, so does the accuracy of the
estimate of r.

5.3 Multiple Specification Testing
Although one can bound the probability of observing ex-
treme specified complexity values using any independent
specification function, if one repeatedly tries different
specification functions until a large specified complexity
value is observed, this amounts to “SC-hacking” (similar
to “p-hacking”) and violates the assumptions undergird-
ing our bounds. The bounds are valid for any single
independent (but arbitrary) specification function; intro-
ducing multiple possible specification functions raises the
probability of observing a large SC value. For example,
assume for a given p(x) value and finite discrete space
X , we observe an SC value of b, using some specification
function ν0 that is also a probability distribution on X .
Seeing that b is too small, we then choose another speci-
fication function uniformly at random from all possible
probability distributions on X (i.e., we implicitly assume
ν(X ) = 1 = r). We continue to repeat the process until
a sufficiently large SC value b′ is observed. Then the
probability of observing the event SC(X) ≥ b′ was not
2−b

′
or less, since we artificially increased the number of

chances we had of observing such an event. Given enough
trials (and a threshold b ≤ − log2 p(x)), the asymptotic
probability of observing b′ that exceeds b approaches 1
as we repeatedly sample more and more specification
functions. Under the stated assumptions, the probability
of uniformly at random choosing a specification function
such that b′ > b in a single trial is

Pr({ν : b′ ≥ b}) = 1− ν0(x),

and so the probability of finding such a function given
N trials is

1− ν0(x)N → 1

as N → ∞. Thus, one must control for multiple spec-
ification testing just as one must control for multiple
hypothesis testing. A simple solution is to always use the
same specification function for the domain in question,
which fixes the number of “specification trials” to one,
while also ensuring the specification function is indepen-
dent of future observations from X , being held constant
regardless of those outcomes.
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5.4 Mechanized Specification Functions
In the same year (1936) that Alan Turing introduced
his model of computation (now known as the Turing
machine) [35], Emil Post described a model essentially
equivalent to Turing’s, which he called “Formulation
1” [36]. Although equivalent in power, Post’s system
made use of a “worker” who would manually move left
or right and manipulate symbols in boxes. Turing had
the insight to realize the worker could be replaced with
a finite state machine, giving rise to a completely mech-
anized form of computer. Similarly, previous work in
specified complexity such as Dembski’s semiotic specified
complexity [4] has relied on the presence of a semiotic
agent (presumably human) whose own cognitive context
would be used to compute specified complexity values.
Given the recent advances in machine learning and AI,
it seems plausible that such computations can be mecha-
nized to provide automated systems for computing such
values. To estimate or compute specified complexity
values requires having a reliable estimate of p(x) (pre-
senting perhaps the most difficult step), an estimate of r
(which can be estimated using uniform random sampling
on X , for finite spaces), and an automated specification
function ν. Having covered details related to estimat-
ing p(x) in Section 5.1, and defined an asymptotically
consistent estimator for r in Section 5.2, we will restrict
our discussion in this section to various strategies for
mechanizing specification functions.

The functional specificity of Hazen et al. [27] used to
create functional specified complexity (see Section 4.5.1)
provides a promising route towards automated specifi-
cation functions. By creating systems to measure and
rank the functional response of configurations for a given
function g, one could compute direct estimates for the
specification values without further human intervention.
These systems would only require accurate measurements
of the functional response for each observed configuration,
of which we already have many viable technologies. Thus,
functional specified complexity models will perhaps be
the first to be fully mechanized.

Axe et al.’s Stylus [37, 38] system presents another
possible (but non-general) route to mechanization. Given
the character recognition system present in Stylus, one
could define a specification function based on the con-
formation of vector structures to legible Chinese. Given
that most of the possible vector structures do not form
legible Chinese characters, the summation of ν should re-
main small for reasonably sized spaces. Since Stylus is an
already existing system, mechanizing Stylus-based spec-
ification function should be a straightforward research
task, which will result in the first fully computable and
mechanized specified complexity model.

Machine learning systems present another possible
route towards automated specified complexity systems.
Given any classifier or regression system mapping to non-

negative values, one can define a specification function
using that learner. For binary classifiers, if the negative
class represents objects produced under the null distribu-
tion and the positive class represents objects produced
by some alternative process, observing large positive
specified complexity values can be used to rule out a
negative class label with an accompanying probability
bound. Since such classification systems are already au-
tomated, reusing them as specification functions presents
a frictionless path towards mechanized specification func-
tions. The same should hold for deep-learning systems
and other AI systems, which can be trained to have
large responses to classes of interest (such as the class
of artifacts created by adversarial humans, in security
scenarios).

Lastly, language models used in natural language pro-
cessing provide yet another possible path, since n-gram
and other models can be trained to provide probability
distributions over the space of character strings, thus
computing nonnegative values for text strings that could
act as specification values. For a natural language pro-
cessing system trained on the output of human English
speakers, such a system could be used to distinguish real
human utterances from text generated by a well-defined
random probabilistic process. Importantly, such a sys-
tem could perform such functions without the need of a
human agent to compute the specified complexity values.

Whether any of the above ideas is developed into
actual working specification systems, it should be clear
that there is no great logical barrier to creating auto-
mated specification functions. The current lack of such
systems presents a research opportunity rather than an
insurmountable roadblock.

5.5 Towards Detecting Design
While the machinery of specified complexity hypothesis
tests allow us to reject proposed distributions as expla-
nations for observed phenomena, inferring design from
such a result requires additional constraints on specifica-
tion functions. When the specification function ν(x) is a
probability distribution on the space X that is correlated
with design in some way, giving large values only to fea-
tures of designed objects, then the specified complexity
test becomes a form of likelihood-ratio test, where the
alternative hypothesis is that the object is more likely to
have been produced as a product of intentional design.
Only then does rejecting the null hypothesis in favor of
the alternative serve as evidence for design hypotheses.
Without this correlation, rejection of the null hypothesis
does not necessarily provide evidence of design.

While such correlation-based specification functions
could occasionally lead to wrong inferences, this is not
necessarily a fatal objection. Such correlation-based
systems would provide evidence of design, not proof;
the more evidence we gather, the more confident we
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become in our conclusions, as is the universal nature of
science. All scientific systems (and practitioners) have
the potential to err.

6. EXAMPLES
6.1 Explanations: Plausibility Requirements
Canonical specified complexity models can be used to
evaluate the plausibility of probabilistic explanations, by
establishing how much a proposed process must boost
probabilities over a baseline to avoid rejection and be
considered a valid explanation of the observed data. Uni-
form models prove useful in this regard, since they allow
us to establish an easily computable baseline against
which to compare the plausibility of any non-uniform
model. We do so as follows.

For a discrete, finite space, let SCu(x) denote a canon-
ical specified complexity value for an observation x under
a uniform distribution u(x), namely

SCu(x) := − log2 r
u(x)

ν(x)
(45)

and assume

Pr(SCu(X) > SCu(x)) < α,

where α is a hypothesis test significance level, so that the
uniform distribution can safely be rejected as an explana-
tion for the data. You then propose a mechanism which
boosts the probability of x above that of the uniform
model, by some factor of s >> 1. Thus,

p(x) = su(x). (46)

Let SCp(x) be the specified complexity value of the
canonical model using the proposed distribution p(x) for
observation x, namely,

SCp(x) := − log2 r
p(x)

ν(x)
. (47)

For your proposed mechanism to be viable it must avoid
rejection under the specified complexity hypothesis test.
Thus, for the new distribution to even be considered as
a possible explanation, it is required that

Pr(SCp(X) > SCp(x)) > α (48)

where X ∼ p and α acts as a minimum plausibility
baseline, since any model with a tail probability less than
α will be rejected as an explanation for the observed data.
As a hypothesis test significance level, smaller α values
will make us more certain of our decision to reject the
distribution in question, avoiding the false rejection of
true explanations, but will also make it easier for a false
explanation to escape rejection. Typically this α will be
set below 0.05, often taking values of 0.01 or 0.001, since
we usually want to avoid false rejection.

Given the requirement that Pr(SCp(X) > SCp(x)) >
α and the fact that our model is a canonical specified
complexity model, we can invoke the bound from Theo-
rem 2 to infer

α < Pr(SCp(X) ≥ SCp(x)) (49)

≤ 2−SCp(x). (50)

Thus,

α < 2−SCp(x). (51)

Combining Equations (51), (47) and (46), we can
rearrange to obtain

s >
αν(x)

ru(x)
. (52)

By Equation (52), we see that in order to avoid rejection
one needs to demonstrate that an explanation boosts
the probability of observation x by at least a factor of
αν(x)/(ru(x)) over the uniform probability. Whenever
we observe large specification values ν(x) this increases
the burden of proof on the person proposing the mecha-
nism. Whenever u(x) is extremely small (as it often is)
the burden will be large.

Equation (52) is a quantifiable constraint that can
be used to formally differentiate explanations that are
causally adequate from those which are not: unless one
can demonstrate quantitatively that a mechanism boosts
probability by at least a factor of s, that mechanism
cannot be considered a plausible explanation. Simply
put, s is the entry fee for a probabilistic mechanism to
even enter the tournament of competing explanations.
Without demonstrating that this burden has been met
(or at very least demonstrating that p(x) boosts the prob-
ability on the scale of s), p(x) cannot yet be considered
a plausible explanation of observation x.

While α may be adjusted slightly to reduce this bur-
den, it cannot be adjusted substantially without giving
the appearance of special pleading to protect an unlikely
explanation. Setting it too small guarantees that one will
only reject explanations at ridiculously small α-levels,
which means one will almost always fail to reject, render-
ing the hypothesis test relatively powerless. Setting α
much smaller than 0.00001 will draw suspicion; setting
it below 10−10 will likely draw heckles. While protecting
against false rejection, the α-level also directly reflects
the plausibility of the explanation itself; although setting
it low may help to avoid outright rejection of a hypothe-
sis, such a move concedes that the proposed explanation
is so implausible that it cannot even meet an anemic
probability requirement like 0.00001. The one proposing
the explanation will want to set α high, to show that we
will fail to reject even at liberal α values, which in turn
means that the explanation is a strong one, rendering
the observed data likely under the model. On the other
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hand, if a model fails to demonstrate it meets the mini-
mum plausibility requirement even for small α values, we
can be confident in our refusal to consider it. Since the
burden of demonstration falls on the one proposing the
mechanism, α values should remain reasonably large, no
smaller than 0.001 as a rule-of-thumb, to demonstrate
the bare minimum of viability for the explanation. If
the observed data remains extremely unlikely under a
mechanism whose sole purpose is making it more likely,
then the explanation isn’t very compelling. What good
is an explanation that fails to make reasonably likely the
one thing it is supposed to explain? So while a smaller α
might help ease the burden, it can never fully eliminate
it.

Lastly, although we only considered a uniform dis-
tribution and discrete space, this same method easily
extends to continuous and other spaces by simply replac-
ing the uniform distribution with another low-probability,
easily computable distribution. There is nothing special
about using the uniform distribution as a baseline, other
than it confers small probabilities on configurations in
large spaces and is typically easy to compute. Any other
distribution with these properties can also be used.

6.2 Electronic Coin Flipper

Imagine we have built an electronic coin flipper, which
should result in fair coin flips, namely, the probability
of heads should equal the probability of tails, p(H) =
p(T ) = 0.5. We would like to test the hypothesis that our
coin flipper is fair using a canonical specified complexity
model. To do so, we must choose which specification
function we will use (the hypothesized distribution p(x)
being given). We have some options, but for simplic-
ity we will use the functional specification function of
Section 4.5.1, since we do not need to estimate r and
because it is relatively easy to use.

Let Mg(x) be the number of sequences in our space X
of possible observations which are at least as surprising
as our observation, having at least as many heads in
their sequences (or as many tails, since the complement
sequence can be just as surprising). The function g :
X → R≥0 therefore measures the degree to which the
sequence diverges from the expected number of heads,
which can be formally computed by

g(x) = |k − `/2| (53)

where k is the number of heads observed in a sequence
of ` flips.

Since ν(x) = Fg(x)−1 where Fg(x) is the proportion
of sequences of the same length with at least as many

heads (or tails), we have

ν(x) = Fg(x)−1

=
|X |

Mg(x)

=
2`

Mg(x)
.

Our trials are independent and identically distributed,
so under the fair coin hypothesis we have

p(x) = 2−` (54)

and following Section 4.5.1 our kardis becomes

κ(x) = |X |(1 + ln |X |)p(x)
Mg(x)

|X |

=
(1 + ` ln 2)Mg(x)

2`
. (55)

Our specified complexity model is therefore given by

FSC(x) = `− log2(1 + ` ln 2)− log2Mg(x). (56)

For our example, assume that we observe strange
behavior, and all of our flips but one are heads. Thus,

Mg(x) = 2

(
`

1

)
+ 2

(
`

0

)
= 2`+ 2,

since there are exactly ` sequences of one tails possible
and a sequence with all tails but one would result in the
same g value, giving us a multiplier of 2, and since there
are two sequences with larger g values, the all heads and
the all tails sequences. Thus,

FSC(x) = `− log2(1 + ` ln 2)− (1 + log2(`+ 1)).
(57)

For ` = 6, Equation (57) yields roughly −0.17, which is
not large enough to reject the fair coin flipper hypothesis.
However, if ` = 13 and we observe 12 heads, we obtain
a value larger than 4.86, which is enough to reject the
fair coin hypothesis at an α = 0.05 significance level. At
` = 23, we can reject at an α = 0.0001 level.

When comparing our specified complexity model
bounds to exact probabilities, we find that our canonical
specified complexity bound adds a roughly 0.69` factor
to what we would obtain by using the parametric bino-
mial model to directly compute the probability of seeing
a sequences with at least as many heads (or at least
as many tails, taking the complement) as the sequence
observed. We state this in the following corollary, proven
in the Appendix.

Corollary 9 (Relation to Optimal Parametric Bound).
Let α be the tail probability bound derived from using
Equation (56) in conjunction with Theorem 2 and let
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ε be the probability under the fair-coin binomial model
of observing a sequence with at least as many heads (or
taking the complement of the sequence, at least as many
tails). Then,

α = (1 + ` ln 2)ε.

By the above corollary, we lose some efficiency com-
pared to using the precise probabilities when the true
underlying distributions are known; yet we gain flexibil-
ity in general, since we can compute canonical specified
complexity values without knowing the full distribution
or assuming it has some parametric form.

6.2.1 Insufficiently Sharp Specification Functions
Keeping with our coin flipper example, we will now look
at what happens when we choose our specification func-
tion unwisely, such that ν(x)/r is never large. We will
call such functions blunt or insufficiently sharp speci-
fication functions. Although the bounds for canonical
specified complexity models will hold using any speci-
fication function that is nonnegative and respects the
integration constraint for r, not all specification functions
are equally powerful for rejecting spurious distributions.
As an extreme example, consider a uniform specification
function on finite X , where ν(x) = c for all x ∈ X and
c > 0. This implies r = c|X | and ν(x)/r = 1/|X |. Then
for any uniform distribution p(x) = 1/|X |, the specified
complexity kardis for all x is

κ(x) = r
p(x)

ν(x)
(58)

=
1/|X |
1/|X |

(59)

= 1. (60)

Taking the negative log base 2 of κ(x) will always result
in a specified complexity value of 0, giving the trivial
tail probability bound of 1. Thus, using such a blunt
specification function, one will never be able to reject
the uniform distribution for any observation, even if the
observation is a sequence of one million heads in a row.

While a completely flat specification function is worth-
less, some reasonable-looking specification functions may
also be problematic. As an example, let us use as our
specification function the raw function g from Equa-
tion (53), which measures the absolute-value difference
between the number of heads observed and the number
expected, instead of a functional specificity Fg(x) based
on it. Thus,

ν(x) = |k − `/2| (61)

where x is a sequence of coin flips of length `, k is the
number of heads observed in the sequence, and `/2 is
the expected number of heads for a fair coin. Since the
trials are still independent and identically distributed,

we again have

p(x) = 2−` (62)

for any sequence x of length `. To finish defining our
kardis we need to compute (or estimate) r =

∑
x∈X ν(x),

where X is the space of all possible sequences of coin
flips of length `. For simplicity, we will assume ` is an
even integer, so that combinatoric rearrangement gives
us∑
x∈X

ν(x) =
∑̀
k=0

|k − `/2|
(
`

k

)
(63)

=

`
2∑

k=0

(`/2− k)

(
`

k

)
+

∑̀
k= `

2+1

(k − `/2)

(
`

k

)
(64)

= 2

`
2∑

k=0

k

(
`

k + `
2

)
(65)

=
1

2
(`+ 2)

(
`

`
2 + 1

)
(66)

= r. (67)

Comparing r to ν(x), an issue arises. Since

ν(x) ≤ |`− `/2| = `/2

this implies

ν(x)

r
≤ `

2

[∑̀
k=0

|k − `/2|
(
`

k

)]−1
(68)

=
`

2

[
`+ 2

2

(
`

`
2 + 1

)]−1
(69)

≤
(

`
`
2 + 1

)−1
. (70)

Assume we observe 50 heads in a row; under this spec-
ification function our specified complexity value would
be

− log2 r
p(x)

ν(x)
= − log2

(
2−50

(
50

26

))
< 3.22 (71)

which means we cannot reject the fair coin flipper hypoth-
esis at even an α = 0.1 level. Observing 100 heads in a
row only results in a specified complexity value of about
3.68, which is not enough to reject the null hypothesis
at an α = 0.05 level, despite witnessing such an extreme
observation. Thus, using overly broad specification func-
tions that give significant “mass” to too many elements
in X results in near powerless tests. Specification func-
tions must concentrate their mass on few elements to be
useful, so that at least some observations might lead to
rejection of the null hypothesis.
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7. CONCLUSION
Specified complexity models have a long history, with
the seminal notion of ordered complexity dating back to
at least Erwin Schrödinger and his concept of aperiodic
crystals [39, 40]. While several specified complexity mod-
els have been proposed in the literature, these models
all share common elements which make them amenable
to formal reduction. We have proposed such a reduction
here, showing that several models (including p-value test
models, semiotic specified complexity, algorithmic speci-
fied complexity, and functional information) are common
form models, and reformulating slight variants of them
into a mathematical form called canonical specified com-
plexity. Furthermore, we have proven several properties
of canonical models, such as proving the conservation
of complex specified information for these models and
giving other bounds on their tail probabilities for observ-
ing extreme values, which can be used to form statis-
tical hypothesis tests. Canonical models are therefore
tools for rejecting proposed distributions as explanations
for observed phenomena, similar to Fisherian p-values.
Furthermore, they do not require knowledge of the full
analytical distribution to be used, but simply compu-
tation based on the observed configuration in question
and a normalizing constant. Although it is a nontrivial
task to form reliable estimates of specified complexity
values for real-world systems, the task is by no means
impossible nor should it even prove any more difficult
than standard estimation tasks in machine learning and
statistical inference. Canonical models can be used in
technological settings, such as in anomaly and cheating
detection, and can plausibly be automated using stan-
dard machine learning techniques, such as using neural
networks or probabilistic language models as specifica-
tion functions. The purpose of this manuscript is to
formally demonstrate the mathematical unity of various
proposed specified complexity models and suggest ways
in which they might be used in technological and other
empirical research.

APPENDIX: PROOFS
Theorem 1. (Conservation of P-Value Specified Com-
plexity) Under the same conditions as Definition 6, for
X ∼ Pθ and α ∈ (0, 1],

Pr

(
− log2

(
pval(X)

α

)
> b

)
≤ α2−b.

Proof.

Pr

(
− log2

pval(X)

α
> b

)
= Pr (log2 pval(X) < log2 α− b)

(72)

= Pr
(
pval(X) < α2−b

)
(73)

≤ α2−b, (74)

where the final inequality follows from the level-α prop-
erty.

We next prove a well-known result from probability
theory which will be useful in deriving later results.

Lemma 1 (Markov’s Inequality). Let (X ,Σ, p) be a prob-
ability space, f : X → R>0 be a nonnegative measurable
function such that E[f(X)] exists, and ε ∈ (0,∞). Then

Pr (f(X) ≥ ε) ≤ E[f(X)]

ε

where X ∼ p.

Proof. Define W = {x ∈ X : f(x) ≥ ε}. Then,

E[f(X)] =

∫
X
f(x)dp(x) (75)

≥
∫
W

f(x)dp(x) (76)

≥
∫
W

εdp(x) (77)

= ε

∫
W

dp(x) (78)

= εPr (f(X) ≥ ε) . (79)

Dividing both sides by ε yields the result.

Armed with Markov’s inequality, we proceed to prove
our main theorem, a generalization of an older theorem
by Milosavljević [41]. It may be easier to understand in
the special case of discrete random variables from Theo-
rem 2, since integration is replaced with simple weighted
summation. We offer two proofs, with the second proof
similar to that given in [6] for algorithmic specified com-
plexity, especially its measure theoretic reformulation
given by [42]. Note that the second proof holds for gen-
eral probability measures p, extending the result to cases
that are neither fully discrete nor continuous.

Theorem 2 (Conservation of Canonical Specified Com-
plexity). Let p(x) be any continuous or discrete prob-
ability measure on space X , let r ∈ R>0 be a scaling
constant, and let ν : X → R≥0 be any nonnegative inte-
grable function where ν(X ) ≤ r. Then

Pr

(
− log2 r

p(X)

ν(X)
≥ b
)
≤ 2−b, (80)

where X ∼ p.

Proof. When b ≤ 0 the result holds trivially. Assume
b > 0 and define W = {x ∈ X : p(x) > 0}. Then

Pr

(
− log2

rp(X)

ν(X)
≥ b
)

= Pr

(
log2

ν(X)

rp(X)
≥ b
)

(81)

= Pr

(
ν(X)

p(X)
≥ 2br

)
(82)

≤ (2br)−1E
[
ν(X)

p(X)

]
. (83)
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where the final line follows from Markov’s inequality. In
the continuous case, we have

E
[
ν(X)

p(X)

]
=

∫
X

ν(x)

p(x)
p(x)dx (84)

=

∫
W

ν(x)dx (85)

≤ ν(X ), (86)

where the inequality follows from the nonnegativity of ν.
In the discrete case, we also obtain

E
[
ν(X)

p(X)

]
=
∑
x∈X

ν(x)

p(x)
p(x) (87)

=
∑
x∈W

ν(x) (88)

≤ ν(X ). (89)

Thus,

E
[
ν(X)

p(X)

]
≤ ν(X ), (90)

and we obtain

Pr

(
− log2

rp(X)

ν(X)
≥ b
)
≤ (2br)−1E

[
ν(X)

p(X)

]
(91)

≤ 2−br−1ν(X ) (92)

≤ 2−b, (93)

where the final inequality follows from the condition
placed on function ν.

Alternative Proof. Define

R = {x ∈ X : − log2 (rp(x)/ν(x)) ≥ b} (94)

= {x ∈ X : rp(x)/ν(x) ≤ 2−b} (95)

= {x ∈ X : ν(x) ≥ 2brp(x)}. (96)

By the nonnegativity of ν, Eqs. (94) and (96), and the
fact that X ∼ p, we have

ν(X ) ≥ ν(R) (97)

≥ 2brp(R) (98)

= 2brPr

(
− log2 r

p(X)

ν(X)
≥ b
)
. (99)

Dividing through by 2br we obtain

Pr

(
− log2 r

p(X)

ν(X)
≥ b
)
≤ 2−br−1ν(X ) (100)

≤ 2−b (101)

where the final inequality follows from the condition
placed on function ν.

Corollary 1 (Level-α Property for Specified Complexity
I). Given X ∼ p and significance level α ∈ (0, 1], let κ(x)
be the kardis from any canonical specified complexity
model. Then

Pr (κ(X) ≤ α) ≤ α.

Proof.

Pr (κ(X) ≤ α) = Pr

(
r
p(X)

ν(X)
≤ α

)
(102)

= Pr

(
log2 r

p(X)

ν(X)
≤ log2 α

)
(103)

= Pr

(
− log2 r

p(X)

ν(X)
≥ − log2 α

)
(104)

≤ α, (105)

where the final inequality follows from application of
Theorem 2 with b = − log2 α.

Corollary 2 (Level-α Property for Specified Complex-
ity II). Let SC(x) be any canonical specified complexity
model. Then for X ∼ p and significance level α ∈ (0, 1],

Pr (SC(X) ≥ − log2 α) ≤ α.

Proof. The proof follows immediately from Theorem 2
and fact that 2−(− log2 α) = α.

Theorem 3 (α-Exponential Bound). Given X ∼ p, sig-
nificance level α ∈ (0, 1], and any augmented canonical
specified complexity model SCα(x) as defined in Defini-
tion 4,

Pr (SCα(X) ≥ b) ≤ α2−b.

Proof.

Pr (SCα(X) ≥ b) = Pr

(
− log2

(
κ(X)

α

)
≥ b
)

(106)

= Pr (− log2 κ(X) ≥ − log2 α+ b)
(107)

= Pr
(
κ(X) ≤ α2−b

)
(108)

≤ α2−b, (109)

where the final inequality follows from application of
Corollary 1.

Corollary 4 (Common Form Model Bound). For any
common form model SC, where r and ν(X ) are as in
Definitions 1 and 2, we have

Pr (SC(X) ≥ b) ≤ 2−br−1ν(X ).

In the special case of r = 1, this simplifies to

Pr (SC(X) ≥ b) ≤ 2−bν(X ).
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Proof. Define r1 := r−1ν(X ) and r2 := ν(X ). Subtract-
ing log2 r1 from both sides, we obtain

Pr (SC(X) ≥ b) = Pr

(
− log2 r

p(X)

ν(X)
≥ b
)

(110)

= Pr

(
− log2 rr1

p(X)

ν(X)
≥ b− log2 r1

)
(111)

= Pr

(
− log2 r2

p(X)

ν(X)
≥ b− log2 r1

)
.

(112)

Since ν(X ) ≤ r2 by construction, we invoke Theorem 2
to obtain,

Pr (SC(X) ≥ b) = Pr

(
− log2 r2

p(X)

ν(X)
≥ b− log2 r1

)
(113)

≤ 2−b+log2 r1 (114)

= 2−br−1ν(X ). (115)

Theorem 4 (Combined Models I). Let
SC1(x), . . . , SCm(x) be canonical specified com-
plexity models with corresponding specification functions
ν1(x), . . . , νm(x), scaling constants r1, . . . , rm, and
common probability function p(x). Define a set of
mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},

such that
∑m
i=1 λi = 1. Then for any such Λ and defining

r′ := maxi ri,

SC ′(x) := − log2 r
′ p(x)∑m

i=1 λiνi(x)

is a canonical specified complexity model.

Proof. Since SC1(x), . . . , SCm(x) are all canonical mod-
els that share a common p(x), this implies p(x) is a
probability distribution on X , ν(x) :=

∑m
i=1 λiνi(x) is a

nonnegative function (being the positively weighted sum
of nonnegative νi(x) functions), and r′ > 0 (as are all ri,
including the maximum). Therefore, it suffices to show
that ν(X ) ≤ r′. We have

ν(X ) =

m∑
i=1

λiνi(X ) (116)

≤
m∑
i=1

λiri (117)

≤
m∑
i=1

λir
′ (118)

= r′, (119)

since
∑m
i=1 λi = 1. The first inequality follows since

νi(X ) ≤ ri for all i = 1, . . . ,m. By Definition 3, SC ′(x)
is therefore a canonical model.

Theorem 5 (Combined Models II). Let
SC1(x), . . . , SCm(x) be canonical specified com-
plexity models sharing a common probability function
p(x). Define a set of mixture variables

Λ = {λi : i = 1, . . . ,m, 0 ≤ λi ≤ 1},

such that
∑m
i=1 λi = 1. Then for any such Λ,

Pr

(
m∑
i=1

λiSCi(X) ≥ b

)
≤ m2−b.

Proof.

Pr

(
m∑
i=1

λiSCi(X) ≥ b

)
≤ Pr

(
max

i=1,...,m
SCi(X) ≥ b

)
(120)

= Pr

 ∨
i=1,...,m

(SCi(X) ≥ b)


(121)

≤
m∑
i=1

Pr (SCi(X) ≥ b) (122)

≤
m∑
i=1

2−b (123)

= m2−b, (124)

where the first inequality follows from taking a convex
mixture, the second inequality from a union bound and
the final inequality follows from Theorem 2 and the fact
that all models are canonical models.

Corollary 5 (Bounds on Semiotic Specified Complexity
(SSC)). Let p(x) be any probability distribution on a
finite discrete space X and define

SSC(x, s) := − log2

[
10120ϕs(x)p(x)

]
where ϕs(x) is the number of patterns available to semi-
otic agent s which have descriptive complexity no greater
than that of x. Then for X ∼ p, we have

Pr (SSC(X, s) ≥ b) ≤ 2−b10−120
∑
x∈X

ϕs(x)−1.

Additionally, whenever |X | ≤ 10120, the following con-
servation bound holds:

Pr (SSC(X, s) ≥ b) ≤ 2−b.
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Proof. Let r = 10120 and ν(x) = 1/ϕs(x) = ϕs(x)−1, so
that

SSC(x, s) = − log2 r
p(x)

ν(x)
.

Thus, SSC is a model with common form. Invoking
Corollary 4, we obtain

Pr (SSC(X, s) ≥ b) ≤ 2−br−1ν(X ) (125)

= 2−b10−120
∑
x∈X

ϕs(x)−1. (126)

We note that because ϕs(x) ≥ 1 (since there is al-
ways at least one pattern with equal or lower descriptive
complexity, namely, the pattern itself), we have∑

x∈X
ϕs(x)−1 ≤

∑
x∈X

1 (127)

= |X |. (128)

Thus, |X | ≤ 10120 implies
∑
x∈X ϕs(x)−1 ≤ 10120, which

implies

10−120
∑
x∈X

ϕs(x)−1 ≤ 1 (129)

and the conservation result follows. Thus, both |X | ≤
10120 and

∑
x∈X ϕs(x)−1 ≤ 10120 are sufficient con-

ditions for conservation of semiotic specified complex-
ity.

Remark. It should be noted that although Landman
claims [8] that the number of possible states should be
used as the replicational resources (scaling constant) r
rather than the number of possible events, it should be
clear that such a claim is mistaken, since the replicational
resources represent the number of attempts a system is
given to produce a given result (if every operation on
every bit were a sampling attempt), which corresponds
to the total number of sampling events possible since the
Big Bang (and not to the number of possible states). In
either case, since we are concerned with proving bounds
for Dembski’s model, and he uses the scaling constant of
10120, we do so here as well.

Corollary 7 (Conservation of Quantitative Irreducible
Complexity (QIC)). Let p(x) be any probability distribu-
tion on a discrete finite space X and define

QIC(x) := − log2 r
p(x)

ν(x)

where ν(x) and r are defined as in Section 4.3. Then for
X ∼ p,

Pr (QIC(X) ≥ b) ≤ 2−b.

Proof. By the definition of p(x), the nonnegativity of
ν, and the fact that r = ν(X ), we obtain the result by
direct application of Theorem 2.

Proposition 1. Functional information I[Fg(x)] is a
common form specified complexity model with

p(x) = |X |−1, (130)

ν(x) = Fg(x)−1, and (131)

r = |X |. (132)

In general it is not canonical, since ν(X ) may exceed r.

Proof.

I[Fg(x)] = − log2 Fg(x) (133)

= − log2 1/Fg(x)−1 (134)

= − log2

(
|X | |X |

−1

Fg(x)−1

)
(135)

= − log2 r
p(x)

ν(x)
. (136)

I[Fg(x)] is therefore a common form specified complex-
ity model where p is a uniform distribution and the
specification function ν equals to 1/Fg(x).

We then have∑
x

ν(x) =
∑
x

1/Fg(x) (137)

=
∑
x

1/(Mg(x)/|X |) (138)

= |X |
∑
x

1/Mg(x), (139)

where Mg(x) is the number of configurations in X
with functional level at least to that of x. Because
Mg(x) ≤ |X |, this sum will exceed |X | in all but one
case, the special case where all configurations have iden-
tical function levels so that

|X |
∑
x

1/Mg(x) = |X |
∑
x

1/|X | (140)

= |X |. (141)

Thus, the model is not canonical in general.

Theorem 6 (Relation of FSC(x) to Functional Informa-
tion). For functional information I[Fg(x)] and FSC(x)
with probability distribution p, the following relation
holds:

FSC(x) = I[Fg(x)] + I(x) + c (142)

where I(x) = − log2 p(x) is the surprisal of x under
distribution p and c = − log2 |X |(1 + ln |X |).
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Proof.

FSC(x) = − log2

(
|X |(1 + ln |X |) p(x)

Fg(x)−1

)
(143)

= − log2 Fg(x)− log2 (|X |(1 + ln |X |)p(x))
(144)

= I[Fg(x)]− log2 p(x)− log2 |X |(1 + ln |X |)
(145)

= I[Fg(x)] + I(x) + c. (146)

Theorem 7 (Canonical Functional Specified Complex-
ity). For any probability distribution p(x) on discrete
finite space X , FSC(x) is a canonical specified complex-
ity model with

ν(x) = Fg(x)−1, and (147)

r = |X |(1 + ln |X |). (148)

Proof. Since FSC(x) = − log2 κ(x) it suffices to show
that κ(x) is a canonical kardis. We have from the defini-
tion of FSC(x) that ν(x) = Fg(x)−1, which implies∑

x

ν(x) =
∑
x

1/Fg(x) (149)

=
∑
x

1/(Mg(x)/|X |) (150)

= |X |
∑
x

1/Mg(x) (151)

where Mg(x) is once again the number of configurations
in X with functional level at least to that of x.

Let x(1) denote the configuration with the smallest
Mg(·) value, x(2) be the configuration with the next
smallest value, etc., so that

Mg(x(1)),Mg(x(2)), . . . ,Mg(x|X |)

is a well-defined list of ascending order.
Considering the sum

∑
x 1/Mg(x), we then have∑

x

1

Mg(x)
=

1

Mg(x(1))
+

1

Mg(x(2))
+ . . .+

1

Mg(x(|X |))

(152)

≤ 1

1
+

1

Mg(x(2))
+ . . .+

1

Mg(x(|X |))
(153)

≤ 1

1
+

1

2
+ . . .+

1

Mg(x(|X |))
(154)

≤
|X |∑
i=1

1/i (155)

≤ (1 + ln |X |), (156)

where the final inequality comes from the fact that∑|X |
i=1 1/i is the partial sum of harmonic series, and thus

has a well-known upper bound of (1 + lnN) where N is
the upper limit of the partial sum.

Thus, ∑
x

ν(x) =
∑
x

1/Fg(x) (157)

=
∑
x

1/(Mg(x)/|X |) (158)

= |X |
∑
x

1/Mg(x) (159)

≤ |X |(1 + ln |X |) (160)

= r. (161)

Since p(x) is a probability distribution on X , ν is a
nonnegative function on X such that ν(X ) ≤ r, and
r > 0 whenever |X | ≥ 1 (which holds for all nonempty
discrete spaces), the kardis κ(x) is canonical, and FSC(x)
is therefore a canonical form specified complexity model,
proving the result.

Corollary 9 (Relation to Optimal Parametric Bound).
Let α be the tail probability bound derived from using
Equation (56) in conjunction with Theorem 2 and let
ε be the probability under the fair-coin binomial model
of observing a sequence with at least as many heads (or
taking the complement of the sequence, at least as many
tails). Then,

α = (1 + ` ln 2)ε.

Proof. Define

k′ := max{k, `− k}

and let

ε = 2
∑̀
i=k′

Binom(`, 0.5, i)

be the probability under the fair-coin binomial model
of observing a sequence with at least as many heads (or
taking the complement of the sequence, at least as many
tails).

Combining Equation (56) with Theorem 2, we obtain

α = 2−FSC(x) (162)

= 2log2 κ(x) (163)

= κ(x) (164)

where κ(x) is as defined in Equation (55).
By the definition of Mg(x) in Section 6.2, we have

Mg(x) = 2
∑̀
i=k′

(
`

i

)
(165)

which is the number of configurations in X which have g
values at least as extreme. By Equations (55) and (165),
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we have

α = κ(x) (166)

= (1 + ` ln 2)2−`

[
2
∑̀
i=k′

(
`

i

)]
(167)

= (1 + ` ln 2)

[
2
∑̀
i=k′

(
`

i

)
2−`

]
(168)

= (1 + ` ln 2)

[
2
∑̀
i=k′

(
`

i

)
2−i2−(`−i)

]
(169)

= (1 + ` ln 2)

[
2
∑̀
i=k′

(
`

i

)
0.5i(1− 0.5)`−i

]
(170)

= (1 + ` ln 2)

[
2
∑̀
i=k′

Binom(`, 0.5, i)

]
(171)

= (1 + ` ln 2)ε. (172)
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7. Montañez GD (2016) Detecting Intelligence: The Turing Test

and Other Design Detection Methodologies. In: Proceedings

of the 8th International Conference on Agents and Artificial
Intelligence, 517–523. doi:10.5220/0005823705170523

8. Landman HA (2008). Dembski’s Specified Complexity: A Sim-
ple Error in Arithmetic. https://bit.ly/2UFi18k. Accessed: 2018-

12-13.

9. English T, Greenwood GW (2008) Intelligent Design and Evo-

lutionary Computation. In: Design by Evolution. Springer pp
7–30. doi:10.1007/978-3-540-74111-4 2

10. Olofsson P (2008) Intelligent Design and Mathematical Statis-
tics: A Troubled Alliance. Biology & Philosophy 23:545–553.

doi:10.1007/s10539-007-9078-6

11. Elsberry W, Shallit J (2011) Information theory, evolutionary

computation, and Dembski’s ‘complex specified information’.
Synthese 178:237–270. doi:10.1007/s11229-009-9542-8
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