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Abstract

The problem of inferring history from genetic data is complex and underdetermined; there are many possible scenarios that would
explain the same data. It can bemademore tractable bymaking reasonable simpli�cations to themodel, but it is continually important
to remember what has been demonstrated and what ismerely a parsimonious working assumption. In this paper we have chosen to
model the demographic ancestry of humanity using the simplest of assumptions,with a homogeneous populationwhose size can vary
over time. All other assumptions such as themutation rateswere standard, andnonatural selectionwas in operation. Using apreviously
published backwards simulation method and some newly developed and faster algorithms, we run our single-couple origin model of
humanity and compare the results to allele frequency spectra and linkage disequilibrium statistics from current genetic data.We show
that a single-couple origin of humanity as recent as 500kya is consistentwith data.With onlyminormodi�cations of our parsimonious
model assumptions,we suggest that a single-couple origin 100kya, ormore recently, is possible.
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1. INTRODUCTION
It has often been claimed that science shows that humans
evolved from a large population over a period of millions
of years, and therefore that the notion of one human race
descended from just two people, must be false.

For example, Francisco Ayala argued that the ge-
netics of HLA-DRB1 of the major histocompatibility
complex necessitates a large population continuing back
tens of millions of years [1–3]. Other scientists have
made other estimates using different methods [4–7]. In
addition, several authors of popular-level books have
claimed that the human race must have evolved from a
large population [8–11]. Dennis Venema, for example,
has claimed that the human population has always been
in the thousands, and has further stated that this is
a fact which can be known with the same certainty as
heliocentrism [12]. However, recent debates have shown
that this representation can be disputed. It seems that
certain common assumptions used for convenience have
been misinterpreted as if they were data-driven conclu-
sions, without testing the single-couple origin hypothesis
scientifically. These debates can be found on several web
pages [13–15]. For instance, some recent qualitative dis-
cussions suggest that genetic data might be compatible

with an extreme bottleneck from a previously evolving
large population to a single-couple around 500kya ago
[16], whereas other authors suggest a primordial couple
that lived much more recently [17–19].

In this paper we continue work along this line and ex-
plore the question whether the single-couple hypothesis
is compatible with genetic data. We previously devel-
oped a backwards simulation method [20, 21] in order
to test the possibility that the human population arose
from a single couple, either by the way of bottleneck or
a single first pair. We will call the first model the Bot-
tleneck to Single Couple (BTSC) model and the second
one the Single-Couple Origin (SCO) model. It is prefer-
able to test these two models by means of backward
simulation, in order to have a faster algorithm, capa-
ble of handling larger populations and more variables.
In this paper we therefore implemented this algorithm,
and also developed other faster ones that use alternate
mathematical methodology but produce the same results,
lending confidence in the output of each method. We
have chosen to use the most parsimonious conditions
possible for this study, because we want to determine
under the strictest possible conditions, with few param-
eters, whether a single pair is possible. In more detail,
we regard the human population as homogeneous (no
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geographic subdivision), dioecious and diploid (males
and females are distinguished, and each individual has
two copies of a non-sex chromosome), and reproduction
is selectively neutral. The only parameters of our SCO
model, which will be explained in detail in the paper, are
the time-varying effective population size, the constant
germline mutation rate, the constant recombination rate
and one parameter associated with the genomic diversity
of the first single couple.

2. BACKGROUND
2.1 Genomic Data
Modern human genomes derive from our earliest ances-
tors, and contain traces of that history. Scientists hope
to use these traces to reconstruct our history. Great
progress has been made in recent decades through major
projects such as HapMap [22] and the 1000 Genomes
project [23] which collated genetic sequence data sam-
pled from the genomes of many people around the world;
two haploid genomes per person sampled. In this paper
we focus on the 1000 Genomes Project. This data set
has conveniently reduced the mass of raw data into the
variant-call-format, which is a list of variants, along with
a list of which genomes each variant is found in. It is
possible to cross-reference the location and ethnicity of
each individual in the sample. Even in its reduced form,
this is still an enormous matrix of data: there are tens
of millions of genetic variants cataloged, multiplied by
5008 haploid genomes in which each variant is ‘called’ as
either present or absent.

2.1.1 Allele Frequency Spectrum
One way to represent 1000 Genomes data in a compre-
hensible form is to graph the allele frequency spectrum
(AFS). The frequency of a variant or allele is the propor-
tion of genomes in a sample which carry that variant,
and the AFS shows the number of variants that exist at
each proportion. See also references [24–26].

Figure 1 shows the AFS for each of the African, East
Asian, and European superpopulations. The scale along
the y-axis is a number-density, so that for instance for the
African population, the area under the African curve over
a certain interval, corresponds to the number of variants
with minor allele frequency within that interval, and
similarly for the East Asian and European populations.
Therefore, the number density conveys information, not
only about the distributions of allele frequencies, but
also on the total genetic diversity of the population.

Note three important features: (i) Most variants are
rare; they have a small frequency in the sample popu-
lation. (ii) The population of Africa has more genetic
variation than the others. (iii) The three populations
have differing numbers of rarer alleles (left end) but very
similar numbers of more common alleles (right end).
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Figure 1: Folded allele frequency spectrum for Africans, East
Asians, and Europeans using 1000 Genomes data. The x-axis is
the minor allele frequency (MAF) of biallelic single nucleotide polymor-
phisms (SNPs) in a given population. The y-axis shows the number
of variants that have that frequency. The number of variants has been
transformed into a number-density (the number in each bin divided by
the width of the bin) so that results from different bin widths and sam-
ples can be compared. Biallelic means there are only two variants
observed in our sample of genomes at that position (locus). The mi-
nor allele is the least prevalent of the two, and so the MAF cannot be
greater than 0.5. The upper (lower) graph plots the same folded spec-
tra on a linear-linear (logarithmic-logarithmic) scale. The correspond-
ing unfolded allele frequency spectra (not shown) have the frequency
of one reference allele of each SNP along the horisontal axis. Its
x-axis therefore ranges between 0 and 1. Often the reference allele
is the derived allele, caused by a germline mutation at a previously
unpolymorphic site. doi:10.5048/BIO-C.2019.1.f1

2.1.2 Linkage Disequilibrium Statistics
A complementary way to summarise the data is by plot-
ting measures of correlation against distance along the
chromosome. This is a way to measure the amount
of recombination that has occurred since the common
ancestor.

Linkage occurs because genetic information is stored
together on a limited number of linear chromosomes, and
so some variants tend to be copied together. Recombina-
tion happens in diploid organisms when the two copies
of a chromosome are brought together during meiosis
and cross over, producing gametes with slightly shuf-
fled chromosomes. Over many generations this shuffling
breaks up the linkage between genetic variants, eventu-
ally becoming completely uncorrelated, which is called
linkage equilibrium. The linkage or correlation, which
is named linkage disequilibrium (or LD), falls off with
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Figure 2: Linkage disequilibrium (LD) statistics r2 (top) and
D′ (bottom) against distance on chromosome 1 and chromo-
some 22, for Africans and Non-Africans, using 1000 Genomes
data. See [21, 27, 28] for definitions of r2 and D′. Variants with
minor frequency less than 0.05 were excluded from the analysis.
doi:10.5048/BIO-C.2019.1.f2

distance between genetic variants, and typically falls off
faster with distance for an older population.

Figure 2 illustrates averaged values of the two most
commonly used measures of LD, r2 and D′, for pairs
of markers at different distances. Both measures have
values between 0 and 1, and these values are higher the
stronger the LD is. D′ equals exactly 1 when there is
complete LD between two biallelic markers (at least one
of four possible combinations of the two pairs of variants
is missing), whereas r2 is usually less than 1 even for
complete LD, unless the two markers happen to have the
same minor allele frequency.

2.2 Genetic Diversity Due to Mutation and Drift
All mutations start as single copy-errors but some of
them increase in the population by random processes.
Figure 3 below shows the ancestry graph with muta-
tions for a small population of constant size, and for the
purpose of illustration, the population is haploid. We
will discuss the principles of ancestry, and how it can
be analyzed, for such a population, where each individ-
ual inherits only from a single parent and there is no
recombination. A haploid population could represent
a female population of mitochondrial DNA or a male
population of Y-chromosome DNA. The same principles
of ancestry and mutation also apply for a single locus

Figure 3: Genealogy of a halpoid population of constant size
with non-overlapping generations. Each generation has 8 hap-
loid individuals (corresponding to 4 diploid individuals). The an-
cestry of the individuals from the present (bottom) generation
can be traced backward in time as marked with lines, over the
course of 7 generations. Mutations are shown as colored dots.
doi:10.5048/BIO-C.2019.1.f3

of DNA (such as haplotype blocks1) in a two-sex popu-
lation, where each individual is diploid and carries two
haploid copies of DNA from that locus; one from each
parent. However, our actual model, as described later in
the paper, is diploid with recombinations, when ancestry
is followed for many loci over larger sections of a chro-
mosome. But that is more complicated to illustrate2. In
the genealogy of a haploid population, as in Figure 3,
each individual carries a single copy of a specific gene
or chromosome segment. Ancestors are at the top of
the graph, and descendants at the bottom. Random
differences in reproductive success cause some lineages
to branch, and others to go extinct. Mutations (dots)
happen randomly at a more-or-less constant rate and
accumulate as they are inherited by descendants. Histor-
ical individuals who don’t have descendants in the final
generation are called non-ancestral. They have no direct
effect on the genetic data we have in the present, and we
have no direct genetic evidence that they even existed.
They can be ignored and removed from the graph, as
shown in Figure 4.

It is important to consider what Figure 4 implies. All
living individuals (of a haploid population) ultimately
derive from a single ancestor at some point in the past.
This is not only true for a population that grew from a
single individual, but also for any population of constant
large size, as in Figure 4. Indeed, in the latter case we
can trace the ancestry of the individuals of the present
generation as far back in time as we wish, and sooner
or later, with a very high probability their ancestral
lineages will merge at the so called most recent common

1Haplotype blocks are small chunks of recombinant DNA of
non-sex chromosomes or the X-chromosome. Such a portion of
DNA has not yet experienced recombinations, and therefore it
can be regarded as one single locus, with an ancestry following
the patterns of inheritance of a haploid population.

2Due to recombinations, differrent haplotype blocks have
different ancestral trees. The whole collection of trees along one
non-sex chromosome is referred to as an ancestral recombination
graph [21, 29–31].
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−→

Figure 4: Genealogy of the haploid population of Figure 3 (left),
and a pruning where all non-ancestral individuals are removed
(right). doi:10.5048/BIO-C.2019.1.f4

ancestor. Therefore, we cannot always distinguish a
constant population size scenario, as in Figure 4, from a
single individual origin scenario, if their ancestral trees
are similar. Thus it may not always be possible to tell
the difference between the two scenarios from genetic
data.
Scientists stand in the present and look back in time to
try to figure out what happened in the past. For this
reason, it is conventional to count generations backwards
in time, where t = 0 is the present. The process of
lineages branching, when looked at backwards in time,
becomes a process of lineages coalescing. Coalescence is
an important concept in modern population genetics.

There are several other things worth noting from
Figures 3-4:

1. Many mutations go extinct almost immediately
(going forward in time); in a growing population,
fewer do; in a shrinking population, more do. We
care only about ancestral mutations: those that did
not go extinct but were passed on from ancestors
to the present day.

2. Ancestral mutations that happened more recently
are greater in number (the number of distinct mu-
tations is greater), but each one is found in pro-
portionally fewer members of the final generation,
on average. These tend to appear on the left end
of the allele frequency spectrum (see Figure 1).
Conversely, ancestral mutations that are more an-
cient are fewer in number (the number of distinct
mutations is fewer), but each one is found in pro-
portionally more members of the final generation,
on average. These can appear anywhere on the
AFS, and are the dominant kind at the right end.

3. Ancestral mutations that occurred before the com-
mon ancestor are present in every member of the
final sample and are thus fixed in the population,
and are no longer variants. Evolutionary neutral-
ists believe that the vast majority of permanent
sequence evolution comes from the random fixa-
tion of mutations by drift rather than fixation due

to selection, so that evolution is mostly random
[32, 33]. Here we will assume evolution is predomi-
nantly neutral (no natural selection), and we will
not concern ourselves with fixation. Instead we are
interested in what the variation can tell us.

2.3 Bottlenecks
When a population gets very small, or starts very small
in the case of a single-couple origin, this is described as a
bottleneck. A bottleneck can cause a significant reduction
in the number of lineages. The loss of lineages can
mean loss of genetic diversity, and an increase in double
recessives, leading to inbreeding depression. However, the
greatest damage to genetic diversity does not come from
the size of the bottleneck alone but from how long it lasts.
Extreme bottlenecks do not necessarily cause extreme
harm, if they are of short duration. Even an extreme
bottleneck of two individuals (the BTSC model) reduces
heterozygosity by only 25% [34], so long as the population
rebounds quickly enough. Although we will consider
neutral variation, it is important to emphasize that the
frequency of some harmful variants may increase during
a bottleneck. On the other hand, it also causes a very
large number of rare but potentially harmful recessive
mutations to be lost. One example is a single pair of
mouflon that rapidly colonised a previously uninhabited
island [35]. In the same way, even an extreme bottleneck
of only two people, from a previously evolving population
of hominids or chimps, would not necessarily lead to
extinction. But if the bottleneck lasted for long, the
genetic threat is substantial.

There is also the further possibility that the original
pair were instantiated with only helpful or neutral varia-
tion, and no harmful recessive mutations, and thus might
not see any inbreeding depression even if the population
started small. This brings us to the topic of the next
section.

3. MODEL DEVELOPMENT
3.1 Primordial Diversity
In the evolutionary model of a diploid population every
portion of a chromosome without recombination events
(a haplotype block) could trace back to one ancestor, but
there is also the possibility of a discontinuous origin (a
‘Big Bang’) with more than one ancestor. In the case of
a single-couple origin (the SCO model), there could be
up to four original versions of each autosomal (non-sex)
chromosome, and up to four original versions of every
haplotype block [17, 18, 20, 21, 36]. If a model with
a first couple is true, when seen through the lens of
evolutionary theory, any such primordial variation would
be misinterpreted as being due to ancient mutations. The

2This assumes traditional models of reproduction. There are
more complex models which may have different consequences,
see for instance [19].
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Figure 5: Genealogy of 8 haploid chromosome segments in a
diploid population founded three generations back in time by
two individuals (corresponding to four chromosome segments).
If the model with a founding generation is correct, the chromosome
segments of the founding generation have no further ancestry, and
then the shaded lines above them represent non-existing ghost lin-
eages. doi:10.5048/BIO-C.2019.1.f5

latter assumption then leads to four ghost lineages and
a period of microevolution that never actually happened
(see Figure 5). In Section 3.2 we will analyze the diversity
of a single couple in more detail, both when the couple
has a unique origin, the primordial variation scenario,
or SCO model, and when the couple is the result of
bottleneck from a large population, the Bottleneck to
Single Couple (BTSC) model.

3.2 Primordially Diverse Genetic Diversity Com-
pared to Bottleneck Diversity

Assume a selectively neutral model, where no individuals
have higher expected reproductive fitness than others.
Recall from Figure 1 that a folded allele frequency spec-
trum has the frequency of the derived allele of a biallelic
SNP along the x-axis. A diploid and neutral Wright-
Fisher population that has had constant effective size Ne
for long enough to reach an equilibrium between muta-
tion and genetic drift, should have an expected unfolded
allele frequency spectrum AFSbefore,i = 4Neµ/i [26, 37],
before any bottleneck occurs. This is the expected num-
ber of sequences with frequency i = 1, . . . , S − 1 for the
derived allele, for a sample of size S. We will see what
happens if this population goes through a bottleneck
of two diploid individuals in the next generation, corre-
sponding to the BTSC model. It is convenient to regard
the whole population as our sample (S = 2Ne haploid
copies for a diploid population of size Ne) and express
the frequencies 0 < f = i/(2Ne) < 1 of the derived
allele on a scale between 0 and 1, as explained in the
caption of Figure 1. This gives a normalized number-
density AFSbefore(f)== S · AFSi = 4Neµ/f before the
bottleneck (see Appendix A.5). Since the bottleneck
corresponds to four haploid individuals (on a non-sex
chromosome), there can be 0-4 copies of each allele at
the bottleneck. If the frequency of a particular allele
before the bottleneck is f , the number of copies k of
this allele among the the two diploid individuals has a
binomial distribution with parameters 4 and f . As we

are interested in variation, we ignore the cases where
variants go extinct (k=0) or fix (k=4). By summing
over all possible alleles before the bottleneck, accord-
ing to the expected unfolded allele frequency spectrum,
the expected unfolded allele frequency spectrum at the
bottleneck becomes

AFSk =
2Ne−1∑
i=1

AFSbefore,i ·
(

4
k

)
fk(1−f)4−k

=
∫ 1

f=0
AFSbefore(f) ·

(
4
k

)
fk(1−f)4−kdf

= 4Neµ×


1, k = 1,
1/2, k = 2,
1/3, k = 3.

(1)

In the same way that we may not be able to tell which
variant is ancestral and which is derived, we may not be
able to distinguish between k=1 and k=3. The folded
distribution at the bottleneck, using the minor allele
frequency k, is3

AFSk = 4Neµ×
{

4/3, k = 1,
1/2, k = 2.

(2)

We notice from equation (2) that the bottleneck scenario
only has one free parameter: the prior heterozygosity
4Neµ, determined by the prior effective population size
Ne and mutation rate µ. This is essentially true, even
if the population size before the bottleneck varied over
time, although the AFS will then look slightly different
[38, 39]. In any case, if there are prior assumptions on
the effective population size history and the mutation
rate, the single parameter of the bottlenecked AFS in
(1), might not be freely variable.

In contrast, the SCO model with primordially di-
verse genomes has two free parameters in the allele fre-
quency spectrum of the founding couple (for non-sex
chromosomes). These two parameters, AFS1 and AFS2,
correspond to the number of variants within the first
couple with a minor allele frequency of 1/4 and 1/2 re-
spectively. In this model, both AFS1 and AFS2 of the
folded primordial allele distribution will therefore be a
side-effect of a different kind of mechanism; for instance
a design process.4 Therefore, the only difference between

3It is also possible to express (2) as a number density
AFS(f) = 4/3 · δ(f − 1/4) + 1/2 · δ(f − 1/2), where δ(f − f0) is
a delta function centered at frequency f0. Therefore, the folded
AFS of the BTSC model, right after the bottleneck, has two
spikes at minor allele frequencies f = 1/4 and f = 1/2. Likewise,
the unfolded spectrum of the BTSC model in (1) has a number
density with three spikes for the frequency of the derived allele,
at f = 1/4, f = 1/2, and f = 3/4.

4Consider Ewert [40] for an example of what the results of a
design process might look like. The primordial gametes model of
Sanford et al [19] has many more free parameters, which allows
for greater flexibility, but at a cost of reduced parsimony.
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the bottleneck and primordial AFS for a neutral model,
is the extra parameter associated with the primordial
AFS. In this paper (see Section 3.3) we will simplify the
primordial AFS and put AFS2 = 0 in equation (2). The
primordial AFS is therefore instantiated with a MAF of
1/4, and this makes the BTSC and SCO models very
similar.

Recall though from Section 2.3 that a large number
of germline mutations are believed to be deleterious or
slightly deleterious [32]. Consequently, the bottleneck
diversity of a non-neutral BTSC model should incorpo-
rate deleterious variants, whereas this is not necessary
for a SCO model in which the single couple has primor-
dial diversity. For this reason, for non-neutral models,
the bottleneck model faces a greater challenge to han-
dle inbreeding depression due to recessive disorders that
spread in the population, at least if the bottleneck lasts
for long [20, 41].

3.3 Primordial Haplotype Block Structure
A primordially diverse SCO model has further choices re-
garding how the variation of the first single couple should
be distributed among their four chromosome copies, and
how to place boundaries between primordial haplotype
blocks. Let us assume that all nucleotide variants are
biallelic, that is, they have at most two variants. These
can be distributed on the four initial chromosomes with
a 1:3 or a 2:2 frequency distribution, like cases k = 1
and k= 2 in Equation (2). Let us call these one-copy
and two-copy variants respectively. One-copy variants
are either exclusively located on the same chromosome
copy in the founding couple, or they appear on different
chromosomes (in this paper they are evenly distributed
on all four chromosomes). In terms of the D′ linkage
statistic, it is always true that D′ = 1 between a one-copy
variant and any other variant, whether it has one-copy or
two-copies (see [21, 27, 28] for a definition of D′). This
means that one-copy variants give no information about
initial linkage or initial haplotype blocks. On the other
hand, two-copy variants do give information: Between
two-copy variants, there is D′ = 1 if the variants are al-
ways together on the same two primordial chromosomes
out of four, or never together because the two variants
appear on opposite pairs of chromosomes; or D′ = 0 if
they are together on only one chromosome but not on
the others. Groups of adjacent variants all having D′ = 1
between them indicate a haplotype block.

Figure 6 below shows variants distributed on the
founding couple’s four copies of a specific non-sex chro-
mosome. Each variant is color-coded according to which
copy or pair of copies it is found on. The vertical positions
along the four chromosome copies represent different loci
and the horizontal, dashed lines represent boundaries
between different haplotype blocks. The top-left case
shows one-copy variants. The top-right, bottom-left,
and bottom-right cases show two-copy variants randomly

Figure 6: Different Single Couple Origin (SCO) models of pri-
mordial diversity, with biallelic variants of the founding couple
marked as dots along their four chromosomes. Each allele (vari-
ant) is color-coded according to which chromosome or pair of chro-
mosomes it is found on, and dashed horisontal lines mark haplotype
boundaries. The four graphs correspond to one-copy variants (top-
left), and two-copy variants distributed randomly (top-right), on the
same two chromosome copies (bottom-left) and on random haplotype
blocks (bottom-right). doi:10.5048/BIO-C.2019.1.f6

distributed, distributed on the same two pairs of chromo-
some copies, and distributed on random haplotype blocks
respectively. The top-left case suggests there are four
haplotypes at every section of the chromosome, but gives
no indication where block boundaries might be. The
top-right case suggests blocks so small that they cannot
be discerned. The bottom-left case suggests one single
haplotype block spanning the length of a chromosome.
Only the bottom-right case shows evidence of multiple
clear haplotype blocks.

However, for the purposes of this paper, we made
the simplifying assumption that each variant was present
on only one initial copy of the chromosome, as in the
upper left case. This implies we do not need to define
primordial haplotype blocks. Since AFS2 = 0, there is
only one free parameter AFS1 of the primordial allele
frequency spectrum. Therefore, our primordial diversity
SCO model of human origins is similar but slightly dif-
ferent from an evolutionary bottleneck (BTSC) model
(2) of human origins.

4. METHODS
4.1 Model Parameters
We restricted our investigations to homogeneous popu-
lations. We chose a generation time of 20 years, and
a germline mutation rate of 1.6×10−8 per nucleotide
per generation, or 48 per haploid genome per generation,
with a genome of size 3×109 bases. The literature gives
a wide range of estimates for the germline mutation rate
ranging from 1×10−8 to 2.5×10−8 per nucleotide per
generation [42–53]. For the recombination rate we used a
value of 1.0×10−8 per nucleotide per generation [54, 55].
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4.2 Simulation Methods
We implemented four different simulation methods. The
primary simulation code is called Haplo - an implemen-
tation of the simulation model described by Hössjer,
Gauger and Reeves [20, 21]. Haplo is the only code we
used that can calculate linkage disequilibrium statistics.

The other three are simpler codes for calculating the
allele frequency spectrum. They are described in the
appendices: a Stochastic Forward Simulation (Appendix
A), a Matrix Forward Calculation Method (Appendix
B) and Coaly - an Approximate Coalescence Backwards
Calculation Method (Appendix C). They are in large
parts the work of Andrew Jones. Of the three smaller
codes, the stochastic simulation method generates allelic
diversity, forward in time, for a haploid Wright-Fisher
population of time-varying size. Among the three algo-
rithms in the appendix, it is the one that most closely
approximates what really happens in an evolving popu-
lation. However, it takes very long to compute results
for large populations, large timescales or large mutation
rates. It turns out that tiny biases in the random number
generator could accumulate over very long simulations.
To supplement this, Coaly was invented as a very efficient
and approximate method for computing the expected
AFS, recursively back in time. It can be used to test ideas
and get qualitative results quickly, but it is inaccurate
close to a bottleneck, or close to the time of the common
ancestor. To bridge that gap between Stochastic Forward
Simulation and Coaly, Matrix Forward Simulation was
implemented in order to eliminate the stochastic element
of the simulation. It calculates expected values of the
AFS forward in time, using transition probabilities of the
Wright-Fisher model. The Matrix method is most accu-
rate but not as fast as Coaly and particularly struggles
with very large population sizes.

Haplo and Coaly can be found at the two
web addresses https://github.com/DiscoveryInstitute/coaly and
https://github.com/DiscoveryInstitute/haplo. Coaly also contains an
implementation of the Stochastic method and the Matrix
method.

5. RESULTS
5.1 Evolution of the Allele Frequency Spectrum
One possible model of human origins is a couple in-
stantiated with perfectly homozygous genomes - that is,
without any primordial diversity - and have slowly been
accumulating mutations ever since. The left column of
Figure 7 shows what this scenario would look like at
various time points. The middle column of Figure 7
shows the distribution of mutations from different times
in the past. Notice that the newest mutations appear on
the left, meaning they are the rarest mutations in the
population, and the oldest mutations are most spread
out, ranging from rare to very common in the population.

Figure 7: Time-evolution of folded allele frequency spectrum:
mutations vs primordial variants. Folded allele frequency spec-
tra (AFS) showing number density of alleles vs minor allele frequency.
In the three columns of the figure, the time-evolution of the form of
the AFS is compared for three different scenarios. The vertical axes
have been scaled in each subplot, to make it easier to compare the
shapes of different curves. The folding or symmetrization at f=0.5
takes into account the potential ambiguity as to whether the current
major variant is the ancestral variant (or the primordial major variant)
or not. The left column (purple) shows how mutations accumulate
over time to form the folded allele frequency spectrum. Each muta-
tion variant starts as a single copy; the minimum possible frequency
at the left of the graph. Most variants quickly go extinct but a random
few drift rightwards and become established in the population, while
new mutations accumulate to the left. Eventually the AFS reaches
equilibrium where the number of new mutations is matched by the
number of variants that go extinct or fix in the population. The popula-
tion size is 10,000 (the effective population size of the human origins
is believed to be in this ballpark [56]) and the mutation rate is 48 per
haploid genome per generation. The middle and right columns show
how the distribution of existing variation changes over time (that is,
the impact of new mutations is excluded). The middle column (green)
shows how mutations change in frequency over time by genetic drift
in a population of 10,000. The right column (blue) shows how pri-
mordial diversity would change over time in a population growing sig-
moidally from 4 to 10,000 over the course of the given number of
generations in each graph, so that there is a different growth rate in
each graph. Genetic drift occurs much faster in small population and
so the degree of genetic drift has an inverse dependence on how
quickly the population grows. See also [36] where genetic diversity is
initialised at 0.5 instead of 0.25. Well mixed primordial diversity looks
similar to ancient mutational diversity; since the AFS of existing vari-
ants evolves towards a flat distribution in either case. See also [57].
doi:10.5048/BIO-C.2019.1.f7
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Figure 8: Visual estimates of which genetic variants could be
primordial in three global superpopulations, on the assumption
that the final distribution of primordial variants will be approxi-
mately flat. African DNA exhibits a lot more variation in total than
for the other populations, but curiously does not show more of the
oldest (possibly primordially diverse) variants. All three superpopula-
tions appear to have roughly the same number of the oldest variants.
doi:10.5048/BIO-C.2019.1.f8

Another possible model (SCO) is a couple with four
heterogeneous versions of each non-sex chromosome, each
having primordially diverse variants. The right column
of Figure 7 shows how this variation would become dis-
tributed over time. This process can happen in just a
few generations, because genetic drift is fastest when
the population is still small. Notice that if enough ge-
netic drift has happened, the distribution of primordially

diverse variants ends up looking similar to the distribu-
tion of very ancient mutations that have not yet been
fixed or removed. However, due to the large population
size in the middle column of Figure 7, it takes much
longer for the ancient mutations to reach the flat (quasi)
equilibrium distribution.

There is a caveat to be noted here: the resulting
flat distribution of primordial diversity depends strongly
on the assumption that the population is homogeneous
and growing uniformly. It is easy to imagine alterna-
tive scenarios which would give different distributions.
Firstly the population splits into several subpopulations
which experience different growth patterns, or waves of
migration across continents, or a single wave of coloni-
sation. The latter is like a series of bottlenecks at the
front, leaving more and more variation behind. Secondly,
for a non-neutral model with directional selection with
selective sweeps (cf. Section 6.1 of [26]), one of the two
alleles of some SNPs will drift towards fixation. This
will cause that part of the AFS that originates from
primordial variation to be skewed towards the left.

5.2 Possibly-Primordial Variation Visual Estimate

If we assume that the distribution of primordial variation
would be approximately flat, and that the allele frequency
spectrum is non-increasing, we can infer the portion of
the AFS that could be due to primordial variation based
on the number-density AFS(0.5) at f = 0.5 (except
for the caveat mentioned above that this only applies
to homogeneous and selectively neutral populations).
Figure 8 shows this breakdown for each of the three global
superpopulations. Curiously, since AFS(0.5) ≈ 10M for
all three populations, they have approximately the same
number 5M of possibly primordial variants. This number
is obtained by summing the purple part of the AFS over
all frequencies (

∫ 0.5
f=0.0 10M df = 5M) in each subplot of

Figure 8.

5.3 Two Human History Scenarios Simulated

We present two different diploid parsimonious scenarios
that fit the African DNA data reasonably well (see Fig-
ures 9-10), both in terms of allele frequency spectra and
linkage disequilibrium statistics. We fit to African DNA
because Africans have greater heterozygosity, and this
might correspond to a more ancient past.
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Figure 9: Folded allele frequency spectrum: Simulation results
from Scenarios 1 and 2, compared to actual human genetic data
from three global superpopulations. The two very different scenar-
ios give similar results, both in good agreement with data from the
African superpopulation. Simulations were performed using the full
Haplo algorithm. A genome of length 3×109bp was simulated in 60
equal chunks. doi:10.5048/BIO-C.2019.1.f9

Scenario 1 A single couple 100,000 generations ago
(about 2mya) having zero heterozygosity (identi-
cal homozygous chromosomes), grows rapidly to
a population of 10,000 people, then grows slowly
and linearly to 16,000 people near the present.

Scenario 2 A single couple 25,000 generations ago
(about 500kya) having primordial heterozygosity
of 0.012,5 grows rapidly to a population of 16,000
people, then holds steady.

Scenarios 1 and 2 are both instances of a Single
Couple Origin (SCO) model, without or with primordial
diversity. The parameters of Scenarios 1 and 2 were based
on their fits to the allele frequency spectrum, using the
Haplo algorithm. Then these parameters were used to
fit Scenarios 1 and 2 for the linkage disequilibrium plots
as well. For both scenarios, the population doubles to
four in the first generation, and then doubles every ten
generations until it reaches the specified plateau. The
real life human population has increased in size recently
and is now close to 8 billions, but this makes only a very
small difference to the extreme left of the allele frequency
spectrum and for simplicity we did not include this in
the model. Both models were kept as simple as possible,
with a focus on explaining the right end of the AFS,
which is more due to ancient history,6 and not overfitting
the left end of the distribution. It is likely that there
are many other scenarios that would explain the data
equally well.

5In Scenario 2, most of the primordial heterozygosity is lost
in the first few generations due to the slow growth rate. It is
also possible to imagine scenarios with lower primordial diversity
compensated for by a faster growth rate.

6Under the parsimonity assumption of a single homogeneous
population.
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Figure 10: Linkage disequilibrium (LD) statistics r2 (top) and D′

(bottom): Simulation results from Scenarios 1 and 2, compared
to actual human genetic data from the African superpopulation.
The two very different scenarios give similar results, both in good
agreement with data. Simulations were performed using full Haplo
algorithm. A section of chromosome of length 50Mbp was simulated.
Variants with minor frequency less than 0.05 were excluded from the
analysis. doi:10.5048/BIO-C.2019.1.f10

5.4 Effective Population Size in the Allele
Frequency Spectrum

Given the parsimonity assumption of a single homoge-
neous population, it is possible to estimate population
size from fitting to the allele frequency spectrum [37].
Figure 11 shows why the AFS of African DNA suggests
the very slowly growing population of Scenario 1: The
left hand side of the AFS corresponds to more recent
times. The observed and simulated AFS are then closer
to the equilibrium for a population of effective size 16,000
- the more recent population size of Scenario 1. On the
right hand side, the AFS corresponds to time points
further back. The observed and simulated AFS are then
closer to the equilibrium for a population of effective
size 10,000, the ancient population size of Scenario 1.
Notice however that the fit is not perfect between either
of the two dashed curves and the left or right parts of
the African AFS. This is the reason why we included this
graph, to illustrate how the frequency of alleles changes
over time is a consequence of population size dynamics.
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Figure 11: Folded allele frequency spectrum of Scenario 1
shows evidence of the slow change in diploid population size
from 10,000 to 16,000. The Scenario 1 data set is the same used in
Figure 9. The equilibrium distributions (blue and green dashed) are
theoretical results, based on an effective population sizeNe of 10,000
and 16,000 respectively. doi:10.5048/BIO-C.2019.1.f11

5.5 Why Models can be Underdetermined

A definite population history cannot always be easily
determined from the genetic data for the simple reason
that different causes can sometimes produce the same
results. The following subsections give several examples
of this. These are meant to be illustrative, not exhaustive.

5.5.1 Mating Patterns Compensate for Population Size

The full simulation algorithm allows for simulation of
non-random mating patterns. There are two parameters
α and β which were explained in detail in [21, 58, 59].
In Scenario 2 they are set to α=∞, β=∞, which means
completely random relationships between parents and
children, with the consequence that the effective popula-
tion size and actual population size are equal. Scenario 3
is identical to Scenario 2 except that α=2, which means
some women are more likely to have children than others,
and β=0, which means each woman mates with only one
man.

Figure 12 shows that Scenario 2 yields an AFS similar
to the equilibrium expected AFS for a population of
14,000, whereas Scenario 3 yields an AFS similar to the
equilibrium expected AFS for a population of only 7,000.
This demonstrates that non-random mating has reduced
the effective population size by half (the precise factor
will depend on the values of α and β). This suggests
that, since human reproduction is not at all random in
reality, the effective population sizes used elsewhere in
the paper might underestimate the actual population
sizes.
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Figure 12: Simulation results showing the effect of mating pat-
terns on effective population size. Scenario 3 is identical to Sce-
nario 2 except for non-random mating; it has identical population
sizes, but exhibits a lower effective population size Ne. The Sce-
nario 2 data set is the same used in Figure 9. Scenario 3 (red
dashed) was simulated using the full Haplo algorithm in a similar
way: A genome of length 3×109 bp in 60 equal chunks. The equi-
librium distributions (green and blue dashed) are theoretical results.
doi:10.5048/BIO-C.2019.1.f12

5.5.2 Primordial Genetic Diversity Compensates for
Shorter Timescale

To accumulate genetic diversity by mutation alone takes
a long time, see Figure 13. Recall that Scenario 1 and 2
give similar AFS, even though Scenario 1 is 2mya and
Scenario 2 is 500kya. The reason is that Scenario 2
has primordial diversity. If one takes away primordial
diversity there is a major shift in the AFS that must be
compensated by a longer time frame.

5.5.3 Mutation Rate Compensates for Population Size
and Timescale

The mutation rate is generally assumed to be a known
constant, and the population size is assumed to be vari-
able over time. If we were to allow for the possibility of
non-constant mutation rates instead, that would make
population sizes and timescales much more uncertain.

Figure 14 illustrates that the shape of the allele fre-
quency spectrum depends on the amount of genetic drift
that occurs, and the rate of genetic drift depends on the
population size. Therefore reducing the population size
reduces the timescale required to get the right shape of
AFS. The height or density of the allele frequency spec-
trum also depends on the amount of mutation. Therefore
a larger (smaller) mutation rate reduces (increases) the
timescale to get the right shape of the AFS. Figure 14
shows the effect of a smaller population size and a shorter
time, and second the effect of a larger mutation rate with
smaller population size and shorter time.
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Figure 13: Simulation results showing effect of primordial diver-
sity in Scenario 2. In Scenario 2 primordial diversity makes a signif-
icant difference. In Scenario 1 the same distribution of genetic vari-
ation is made up by more time accumulating mutations with genetic
drift. The Scenario 1 and 2 data sets are the same used in Figure 9.
Scenario 2 without primordial diversity (red dashed) was calculated
using the Matrix method. doi:10.5048/BIO-C.2019.1.f13
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Figure 14: Simulation results showing the effect of population
size and mutation rate on Scenario 2. The green dashed line
shows the effect of the effective population size Ne and time T since
the origin both reduced by a factor of 2. The light blue dashed line
is same as green, but with a compensating effect of increasing the
mutation rate µ by a factor of 2. The Scenario 2 data set is the same
used in Figure 9, using the Haplo method. The green and blue lines
were generated using the Matrix method. doi:10.5048/BIO-C.2019.1.f14

6. DISCUSSION
The simulation method for human origins proposed by
Hössjer, Gauger, and Reeves [20, 21] has now been im-
plemented. A number of simpler models were developed
(Appendices A-C) for exploratory research and to vali-
date the full model (Appendices D-E).

We then performed two large simulations, effectively
simulating an entire genome in a population of up to
16,000 people for up to 100,000 generations. This demon-
strates that human genetic data (at least as summarised
in the allele frequency spectrum and simple linkage dise-
quilibrium statistics) from non-sex chromosomes is consis-
tent with at least two different but parsimonious models
of human origins from a single couple. The model with-
out diversity of the first couple dates to about 2mya ago,
whereas the model with primordial diversity has a first

couple that lived about 500kya ago. Thus, we show that
using assumptions commonly used by evolutionary ge-
neticists, a single-couple origin is possible, despite claims
to the contrary.

A general principle of model selection is to choose a
parsimonious model that explains data as well as pos-
sible, see for instance [60] and references therein. The
intent of this paper is to make a limited point in the most
forceful way: that a single-couple origin is certainly pos-
sible. This conclusion is made more forceful by the fact
that our models are very simple and parsimonious, yet
match the observed data very closely. The SCO model
we consider differs from the prevailing interpretation of
human ancestry in only two assumptions: (i) That we
evolved continuously from non-humans in a large popula-
tion. (ii) That genetic diversity is always due to germline
mutations. This raises at least two questions, firstly
whether it is possible to discriminate between models
where humanity descended from a large population and
a first couple, and secondly whether including additional
considerations in the model would bring the first couple
forward in time. These are the topics of the next two
subsections.

6.1 Discrimination Between the Single Couple Ori-
gin and the Large Population Ancestry Models

Although typing of ancient DNA has exploded in recent
years [61], population genetics still faces the problem
of reconstructing human ancestry, mostly from current
data. This makes it possible for several quite different
demographic models of human history to fit genomic
data equally well. In particular, we showed in this paper
that a unique origin model of humanity fits allele fre-
quency spectra and linkage disequilibrium plots at least
as well as a model for which humanity descends from
a large population. Is it possible then to discriminate
between these two models, using only genetic data? This
is discussed in detail in Section 3 of [20], but here we
highlight four possibilities. The first option is to include
genetic data from Neanderthals and Denisovans, which
have intermixed with the ancestors of humans alive to-
day [62–64]. The task is then to compare models where
these archaic populations descend from a founding hu-
man couple or not. The second option is to study more
carefully the consequences of inbreeding depression (see
Sections 2.3 and 3.2) between a unique origin model
where primordial diversity of the first couple is selec-
tively neutral, and a model where humanity descends
from a large population in which individuals have many
deleterious or slightly deleterious variants passed on from
their ancestors [41, 65]. The third option is to consider
ancestry of DNA without recombination, from mitochon-
dria and Y-chromosomes, where one single family tree is
reconstructed, for females and males respectively [18, 66–
69]. These female and male trees will only go back to
the most recent common ancestor (MRCA), whether
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a unique origin model of humanity holds or not. It is
however possible to test a single origin hypothesis by
comparing ages of the female and male MRCAs.

The fourth option is to study a first couple hypoth-
esis using haplotype blocks of recombining DNA. The
objective would be to test whether these blocks can be
clustered into four and three groups, for non-sex chro-
mosomes and X-chromosomes respectively [70–72]. The
issue of haplotype blocks is of particular interest for the
HLA-DRB1 gene of the major compatibility complex of
chromosome 6, where previous research indicates per-
haps as few as four ancestral lineages [73–76]. In fact,
the entire HLA complex could be examined to see if no
more than four haplotype blocks are present in any given
genome segment. The HLA complex is one of the most
polymorphic regions of the human genome and as such an
excellent test for a unique origin hypothesis of humanity.
However, it is also one of the most complex, with gene
conversion on one hand, and stretches where recombi-
nations are suppressed or its products are lethal on the
other, complicating the evaluation of haplotype blocks.
One must also consider the evidence of shared sequence
with other primates, though there is evidence that HLA
genes are subject to convergent evolution [77, 78]. In
order to test whether or not the first pair hypothesis
is correct, at any position along the HLA complex, all
lineages should coalesce to at most four ancestral lineages
[75].

6.2 Extensions of the Single Couple Origin Model
It is very likely possible to extend our first couple ori-
gin model of humanity in order to find more complex
scenarios in which the data is compatible with a more
recent origin, but we deliberately circumvented fine tun-
ing of the model to data. We avoided introducing any
additional hypotheses, beyond the idea of a single-couple
origin with or without primordial diversity. Let us how-
ever mention three possible extensions of our model that
possibly could warrant a more recent time point of the
founding couple. First, the most obvious extension of
our model is to generalize the parameter that (apart
from primordial diversity) determines the timescale - the
germline mutation rate. Our models assume a constant
mutation rate and we use values that have been esti-
mated in specific populations in the present [42–53]. But
the mutation rate is also known to be variable, with dis-
tinct families and populations exhibiting different rates
of mutation [44, 79–81]. Mutator lineages exist in many
species, including mice. It is even logically possible there
exists some kind of targeted adaptive mutagenesis, and
this could also skew the distribution of alleles. It should
be noted however that variable mutation rates impose
challenges, since they are easily confounded with other
demographic parameters.

As a second extension, it is worth noting that
the human population has probably been very non-
homogeneous, with several more or less interconnected

subpopulations, which could skew the distribution of al-
leles. Population subdivision has in fact been accounted
for in common descent models of human history [82], and
the same could be done for a Single Couple Origin model.
This would add several parameters to our SCO model
that capture geographic movements, such as coloniza-
tion of new regions and occasional migration between
partially isolated populations. In this context it is of
interest to fit not only the allele frequency spectrum of
the metapopulation, but also the multipopulation allele
frequency spectrum of several subpopulations simulta-
neously [83]. It is also worth noting that population
substructure and ‘stirring’ effects are well suited for phy-
logenetic reconstruction, including algorithms such as
the ARGweaver [84, 85].

The third and possibly most promising extension of
our model is to include natural selection, most notably di-
rectional selection with selective sweeps. Notice however
that Haplo is a backward simulation algorithm that does
not allow for selection. It is possible that a genomewide
forward simulation approach, such as Mendel’s Accoun-
tant [86], must be employed in order to incorporate
directional selection. On one hand the neutral theory
of evolution [32] postulates that genetic drift of neutral
variants is more important than fixation of advantageous
alleles, in particular when genomewide statistics such
as allele frequency spectra and linkage disequilibrium
statistics, are used. On the other hand, this neutral view
of evolution has recently been challenged [87–89]. Models
with directional selection are particularly relevant if the
first single pair lived quite recently, since then there are
fewer recombinations in human history. As this increases
the impact of selective sweeps to drive more alleles to-
wards fixation, we conjecture that directional selection
will increase the number of SNPs with a fairly small
minor allele frequency, so that the left part of the allele
frequency spectrum is elevated. Interestingly, it was the
left part of the AFS that gave the largest mismatch be-
tween our parsimonious model of human ancestry and
data, when the first couple was chosen more recently
than for Scenario 2 (500 kya ago).

It is beyond the remit of this paper to explore these
three and other possible expansions of our parsimonious
single-couple origin model for humanity. But in light
of the many possible extensions, we suggest that it is
possible to fit a model to genetic data, for which the
founding couple lived 100kya ago or even more recently.
In any case, the critical point that we wish to make is
that, as far as we know scientifically from the genetic
data, the human species could have come from as a
single couple, so that all humans alive today could have
descended uniquely from that first pair.
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APPENDIX A. STOCHASTIC SIMULATION
In this appendix we describe a simple but inefficient
algorithm for generating the allele frequency spectrum
using forward simulation. In a forward simulation all
individuals are included, not just the ancestral ones.

A.1 Reproduction
Assume that generations are numbered t = 0, 1, . . . , T ,
where t = 0 is the present and t = T the founder gen-
eration. Consider a haploid population of size Nt at
generation t, reproducing like the Wright-Fisher model,
and let na,t be the number of copies of allele a at gener-
ation t. The probability that an individual in generation
t is a child of a parent having allele a in generation t+1
is

p ≡ na,t+1/Nt+1. (3)

The expected number of copies of that allele in generation
t is

n̄a,t = Nt p = na,t+1Nt/Nt+1, (4)

but the actual number of copies na,t is sampled from
a binomial distribution with parameters n = Nt and
p = na,t+1/Nt+1, using standard code libraries. Sam-
pling from successive random distributions simulates the
process of genetic drift. If the number of copies falls to
zero, the allele is deleted from the simulation. This is
what happens to most alleles under most circumstances;
they go extinct and are thus non-ancestral to the final
sample. If the number of copies reaches Nt, which hap-
pens less often, then the allele is fixed, and it can also
be deleted from the simulation.

A.2 Mutation
Suppose that the mutation rate per individual per gener-
ation is µ, and that the infinite sites model holds [90]. By
this we mean a model where every mutation is unique;
the chance of a mutation happening at the site of a pre-
vious mutation is zero (one in infinity). This model is
good enough for many purposes, and is also used in the
full simulation code Haplo. Since each new mutation
produces a new allele, the expected number of new alleles
in generation t is µNt. The actual number of new alleles
is sampled from a Poisson distribution with parameter
µNt. This number of new alleles is added at generation
t, each as one copy: na,t = 1.

A.3 Founding Diversity
The founding generation T is at the start of the sim-
ulation. Suppose the allele frequency spectrum of the
founding population is a vector ν = (ν1, . . . , νNT−1), if
all alleles are recorded, or ν = (ν1, . . . , νNT /2), if only al-
leles with the minor frequency are recorded. In any case,
simply add ν1 new alleles a, each with frequency na,T = 1,
then ν2 new alleles each with frequency na,T = 2, and
so on.

A.4 Sampling
At the end of the simulation, the variants must be sam-
pled without replacement to see how many in the final
total population make it into the final sample popula-
tion. This is implemented at the final generation step,
by replacing the true population size N0 of the present
generation with the sample size S. Likewise, the true
frequency na,0 of allele a at time t = 0 is replaced by the
number of copies of a in the sample.

A.5 AFS - Approximate Continuous Function
The allele frequency spectrum is taken from the distri-
bution of alleles at t=0, after the sampling, by summing
the number of alleles a at each frequency from 1 to S−1.
The number of alleles with frequency i is

AFSi =
∑
a

δ (na,0, i) , (5)

where

δ(n, i) =
{

1, n = i,

0, otherwise.
(6)

Finally, transform this distribution into a continuous
function AFS(f) = S · AFSi, defined for frequencies
f = i/S between 0 and 1. Since df = di/S, it follows
that ∑S

i=1 AFSi =
∫ 1

0 dfAFS(f). (7)

The program outputs the results in the following form:
f AFS(f)

1/S S ×AFS1
2/S S ×AFS2
· · ·

(S−1)/S S ×AFSS−1

Suppose summation in (5) is taken over all alleles a
at all SNPs. Then the allele frequency spectrum (5) and
(7) is not the unfolded spectrum. If also all polymorphic
sites are biallelic, it follows that AFS(f) is symmetric
around f = 0.5. The folded spectrum of Figure 1 is then
simply the restriction of AFS(f) to the interval (0, 0.5].
On the other hand, if summation in (5) is over all derived
alleles a, we obtain the unfolded spectrum. The folded
spectrum of Figure 1 then equals AFS(f) + AFS(1− f)
for all frequencies f ∈ (0, 0.5]. As mentioned below
Figure 1, the folded spectrum is a number-density such
that its integral over any subset of (0, 0.5] gives the
number of SNPs with minor allele frequency within that
set. It turns out that AFS(f), as well as the folded
spectrum, is more or less independent of the sample size
S ≤ N0 for frequencies f not very close to 0. For instance,
in Section 3.2 we indicate that a diploid Wright-Fisher
model, with effective size Ne and mutation rate µ, has an
unfolded spectrum AFS(f) = 4Neµ/f when equilibrium
between genetic drift and mutations has been attained,
independently of sample size S.
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APPENDIX B. MATRIX METHOD FOR
CALCULATING EXPECTED AFS
Consider the same haploid Wright-Fisher model as in
Appendix A. The algorithm in this appendix gives the
expected (that is, average) allele frequency spectrum
exactly with better efficiency and better numerical ac-
curacy than the stochastic approach of Appendix A.
Instead of storing an actual number of copies for each
allele separately, we store the expected number of alle-
les that should have that number of copies; that is, we
store the expected AFS at each generation. This AFS is
propagated forward through the generations using a bi-
nomial distribution transition matrix instead of binomial
sampling [91].

B.1 Reproduction
Let mi,t be the expected number of alleles that have
i copies at time t, where 0 ≤ i ≤ Nt. These can be
calculated from the preceding generation t+1 as follows:

mi,t =
Nt+1∑
j=0

mj,t+1
Nt!

i!(Nt−i)!

(
j

Nt+1

)i(
1− j

Nt+1

)Nt−i
,(8)

for i = 0, 1, . . . , Nt. Note that the transition matrix is
a set of Nt+1 +1 binomial distributions having n=Nt
trials with probability of success p = j/Nt+1, for j =
0, 1, . . . , Nt+1. Also note that if Nt 6= Nt+1, then vector
mt and mt+1 have different sizes and the transition matrix
is not square. Finally, note that mi=0,t and mi=Nt,t are
the total expected number of mutations that have been
lost or fixed respectively. They are absorbing states
which can be treated a special cases.

B.2 Mutation
Again assuming the infinite sites model [90], new mu-
tations appear as single copies (i = 1). The expected
number of new alleles is µNt. Adding this number to (8),
we update the expected AFS according to

mi=1,t ← mi=1,t + µNt. (9)

B.3 Founding Diversity
At the start of the simulation, at the founding generation
T , the allele frequency spectrum m is simply the founding
diversity ν, i.e.

mi,T = νi. (10)

B.4 Sampling
As in the stochastic simulation, at the end of the for-
ward simulation, the allele frequency spectrum must be
sampled from the final total population. This is again
implemented at the final Generation step, by replacing
the true population size N0 with the sample size S. The
allele frequency spectrum is transformed in the same way
as described in Section A.5.

APPENDIX C. COALY: APPROXIMATE
COALESCENT BACKWARD METHOD
FOR ESTIMATING EXPECTED AFS
Assume that the haploid Wright-Fisher model of Ap-
pendices A-B holds. In this appendix we present an
approximate but very fast method of calculating the
expected AFS for such a model. Recall that t is the gen-
eration back in time from the present, and that Nt is the
size of the population at time t. A sample is taken from
the population at the present time, so let S ≤ N0 be the
size of that sample. Let At be the size of the ancestral
population at time t; that is, the number of individuals
who have descendants in the sample and are thus an-
cestors of the sample. The number of ‘ancestors’ in the
extant generation is just A0 = S but beyond this they
may diverge, with the ancestral population shrinking as
lineages coalesce.

C.1 Number of Ancestors
The expected number of ancestral children per individual
living at time t+1 is

λ ≡ At/Nt+1. (11)

The number of ancestors at time t+1 is the number of
parents who have ancestral children. If we assume the re-
lationships between parents and children are independent
and random, then the probability Pn that any particular
individual at time t + 1 will have n ancestral children
can be approximated by a Poisson distribution (this is
not quite accurate for small populations) with expected
value λ. That is,

Pn = λn

n! e
−λ, (12)

for n = 0, 1, 2, . . .. The probability of any particular
individual having children is 1−P0 = 1−e−λ, and thus the
expected number of ancestors in the parental generation
t+1 is

At+1 = Nt+1 (1− e−λ). (13)

This expression can be used iteratively to calculate the
ancestral population at each generation back from the
present. If we expand the expression in a Taylor series,
we get a close approximation to a familiar expression for
pairwise coalescence [92]:

At+1 = At −
A2
t

2Nt+1
+O(λ3). (14)

However, we can go beyond pairwise to multiple coales-
cence in a single generation.

C.2 Number of Descendants per Ancestor
Define ωt,n to be the probability that an ancestral indi-
vidual in generation t is ancestor to n individuals in the
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sample, for n = 0, 1, . . . , S. In particular, in the present
generation each individual is ‘ancestral’ to only itself:

ω0,n =
{

1 n = 1
0 otherwise

(15)

Now define the coalescence probabilities Cn which are
equal to the probability of an ancestral individual at
time t + 1 having n children, which is the probability
of any individual having n ancestral children given that
he/she has any at all:

Cn = Pn
1−P0

= λn

n!
e−λ

1−e−λ . (16)

Now we make a simplifying assumption that the different
ancestral individuals of the same generation have an inde-
pendent number of offspring in the sample. In reality they
would be negatively correlated, but the more ancestral
individuals there are, the smaller is this negative corre-
lation and the better this approximation will be. Then
ωt+1,n may be calculated iteratively from ωt,1, . . . , ωt,n
by conditioning on the number of ancestral children an
individual at time t+ 1 has:

ωt+1,n = C1 ωt,n

+ C2
∑n−1
i=1 ωt,i ωt,n−i

+ C3
∑n−2
i=1

∑n−i−1
j=1 ωt,i ωt,j ωt,n−i−j

+ · · · . (17)

There is a self term, a pairwise coalescent, but then also a
threewise coalescent and more. This is a computationally
expensive polynomial sum, but it can be made more
efficient. The first strategy is to define a weight vector
that can be calculated iteratively:

ω
(k)
t,n ≡


ωt,n, k = 1,∑n−1
i=1 ωt,i ω

(k−1)
t,n−i , 1 < k 6 n,

0, otherwise.
(18)

Then the sum in equation (17) simplifies to

ωt+1,n = C1 ω
(1)
t,n + C2 ω

(2)
t,n + · · ·+ Cn ω

(n)
t,n . (19)

The second strategy is to truncate the summation when
the size of each term approaches the machine precision.
Finally, noting that the weights do not change greatly
from generation to generation, a third efficiency strategy
is to not update all the weights every generation, but
instead multiply only the small number of coalescent
probabilities, and then apply those to the full set of
weights only when a certain threshold is reached. The
scheme to do this is analogous to equation (17) and can
itself be accelerated by analogy to equations (18)-(19).
Together, these strategies speed up the calculation by
several orders of magnitude.

C.3 AFS - Mutational Diversity
If a mutation happens at generation t, it happens in
exactly one ancestor, and propagates forward to its de-
scendants. We assume each mutation is unique and
happens at a different site (the infinite sites approxima-
tion). Thus the probability that a particular mutation
affects n descendants in the sample is ωt,n. Let µ denote
the mutation rate per individual per generation. Then
the expected number of mutations at time t that affect
exactly n individuals in the sample is µAtωt,n. From
this it follows that the total expected allele frequency
spectrum due to mutations is

AFSn =
∑T
t=0 µ At ωt,n , (20)

for n = 1, 2, . . . , S − 1.

C.4 AFS - Founding Diversity
To simulate a population founding event at time T , it
will often be the case that NT is small. In this case, we
might want to specify the number of minor alleles that
are present in 1, 2, · · · , NT /2 members of the founding
population. Let νn be the number of alleles that are
present in exactly n members of the founding population.
However, not all of the founding population is ancestral,
so this distribution must be sampled to reflect the ances-
tral population, using the binomial distribution this time
because it is more correct for small populations. We find
that

ν′m =
∑
n

n!
m!(n−m!) λ

m (1− λ)(n−m) νn, (21)

with λ = AT /NT . The ancestral founding diversity at
time T propagates through time to the sample genera-
tion at time 0. The contribution to the allele frequency
spectrum can then be calculated as
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Figure 15: Haplo agrees with the accurate forward matrix cal-
culation method for Scenario 1: A single-couple origin scenario
at 100,000 generations ago (about 2mya), where there is no pri-
mordial diversity, the population rapidly rises to 10,000 people and
then grows linearly to 16,000 people near the present day. The
genome-wide mutation rate per individual per generation is µ = 48.
doi:10.5048/BIO-C.2019.1.f15
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AFSn = ν′1 ωT,n

+ ν′2
∑n−1
i=1 ωT,i ωT,n−i

+ ν′3
∑n−2
i=1

∑n−i−1
j=1 ωT,i ωT,j ωT,n−i−j

+ · · · , (22)

for n = 1, 2, . . . , S−1. The ν′1 term is just like mutational
diversity, but the ν′2 term is like a pairwise coalescence
followed by mutation, and the ν′3 term is like threewise
coalescence followed by mutation, and so on. Notice the
similarity to equation (17). It can also be accelerated us-
ing the scheme in equations (18)-(19). Finally, the allele
frequency spectrum (the sum of (20) and (22) is trans-
formed in the same way as described in Appendix A.5,
with allele frequencies given on scale 0 < f < 1.

APPENDIX D. METHOD TESTS FOR AFS
COMPUTATION

In this appendix, we compare the results of different
methods of calculating of the allele frequency spectrum.
The purpose is to validate that Haplo and the Matrix
method are working as expected, to demonstrate the
speed of Coaly, but also to show the accuracy limitations
of the Stochastic Method and Coaly. See Figures 15-20
for details.
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Figure 16: Haplo agrees with the accurate forward matrix calcu-
lation method for Scenario 2: A single-couple origin scenario at
25,000 generations ago (about 500kya), where there is primordial di-
versity with initial heterozygosity of 0.012, the population doubles to
4 in one generation and then doubles every 10 generations until it
reaches 16,000 people, then stays constant up to near the present
day. The genome-wide mutation rate per individual per generation is
µ = 48. doi:10.5048/BIO-C.2019.1.f16
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Figure 17: Coaly converges on the theoretical equilibrium distri-
bution [37] for constant population size scenarios. Parameters:
effective population size Ne = 10, 000 and genomewide mutation
rate per individual per generation µ = 48. The theoretical equilib-
rium distribution for this haploid population is 2µNe/f , where f is
the derived allele frequency. There is zero founding diversity in these
scenarios. These AFS are not ‘folded’: they show the final frequency
0 < f < 1 of alleles that began as minor alleles, although the plot is
truncated at f = 0.5. doi:10.5048/BIO-C.2019.1.f17
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Figure 18: Constant population size scenarios without founding
diversity: Coaly roughly agrees with the Stochastic simulation
and the Matrix method. Parameters: effective population size Ne =
10, 000 and genome-wide mutation rate per individual per generation
µ = 48. The three methods diverge for long simulations (10,000
gens or more). These AFS are not ‘folded’: they show the frequency
0 < f < 1 of the derived allele (not all minor alleles), although the
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Figure 19: Timing comparisons for the constant population size
calculations in Figures 17&18. doi:10.5048/BIO-C.2019.1.f19
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Figure 20: Extreme bottleneck scenarios with founding diver-
sity: Coaly agrees with the Stochastic simulation and the Ma-
trix method. Population size grows linearly from 4 to 10,000, the
genome-wide mutation rate per individual per generation is µ = 48,
and the founding diversity (variants each present in exactly one of the
four founders) is ν = 107, corresponding to a heterozygosity of about
0.003. As in Figure 18, the approximations used by Coaly begin to fail
when the number of remaining lineages approaches 1. These AFS
are not ‘folded’: they show the final frequency 0 < f < 1 of alleles
that began as minor alleles, although the plot is truncated at f = 0.5.
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Figure 21: Timing comparisons for the bottleneck calculations
in Figure 20. doi:10.5048/BIO-C.2019.1.f21

APPENDIX E. METHOD TESTS FOR LD
STATISTICS
In this appendix we describe a simple test of the linkage
disequilibrium statistics using Haplo. The approximate
theoretical expression for the σ2 statistic at physical
distance d along the chromosome in a diploid population
of effective size Ne is

σ2(d) = 10 + ρ(d)
22 + 13ρ(d) + ρ(d)2 , (23)

where ρ(d) ≡ 4Nerd, see [93, 94] for details. We sim-
ulated a constant diploid population of effective size
Ne=24, 000 for 100,000 generations (about 2mya) with
a recombination rate r= 1×10−8 and a mutation rate
µ=1.6×10−8 per nucleotide per generation, on a section
of chromosome of length 50Mbp.

From Figure 22 we see that this analytical expression
for σ2 agrees well with simulated values. No correspond-
ing formulas exist for the expected values of r2 and

D′, but for comparison, simulated averages of these LD
statistics are shown in Figures 23-24.
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Figure 22: Haplo roughly agrees with theoretical approxima-
tion for the σ2 linkage disequilibrium (LD) statistic. The
population scenario is described in the text. Variants with mi-
nor frequency less than 0.05 were excluded from the analysis.
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Figure 23: Haplo results for the r2 linkage disequilibrium (LD)
statistic. The population scenario is described in the text. Variants
with minor frequency less than 0.05 were excluded from the analysis.
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54. Collins A, Frézal J, Teague J, Morton NE (1996) A met-
ric map of humans: 23 500 loci in 850 bands. Proc Natl
Acad Sci USA 93:14771-14775. doi:10.1073/pnas.93.25.14771

55. Kong a et al (2002) A high-resolution recombination
map of the human genome. Nat Genet 31:241-247.
doi:10.1038/ng917

56. Takahata N, Satta Y, Klein J (1995) Divergence
time and population size in the lineage leading
to modern humans. Theor Popul Biol 48(2):198-221.
doi:10.1006/TPBI.1995.1026

57. Kimura M (1964) Diffusion models in population genet-
ics. J Appl Probab 1(02):177-232. doi:10.2307/3211856
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