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Abstract

Algorithmic specified complexity (ASC) is an information metric that measures meaning in an event, based on a chance
hypothesis and a context. We prove expectation of ASC with regard to the chance hypothesis is always negative, and
empirically apply our finding. We then use this result to prove expected ASC is conserved under stochastic processing, and
that complexity for individual events is conserved under deterministic and stochastic processing.
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1. INTRODUCTION
Algorithmic Specified Complexity (ASC) is a metric of mean-

ing. The metric guarantees that false positives are unlikely to

result from chance due to the improbability of ASC result [1].

However, since there is still a possibility of false positives, this

raises the question of whether the expected ASC is positive.

If the expected ASC is positive, then by the law of large

numbers [2] we can expect to observe average positive ASC

with enough samples. Consequently, if the expected ASC is

positive, the occurrence of ASC is not a surprising event in

need of an explanation, and thus doesn’t necessarily signify

meaning. In this paper, we show the expected amount of

ASC from a random variable is always negative. We also use

this result to prove conservation bounds on complexity under

deterministic and stochastic processing.

2. MEASURING MEANING
To understand the motivation for measuring meaning, we

consider the two metrics of standard information theory:

Shannon surprisal and algorithmic information. We will see

that neither Shannon surprisal nor algorithmic information

can measure meaningful information. Instead, we need a

hybrid of the two, known as a randomness deficiency, that is

measured in reference to an external context.

2.1 Shannon Surprisal
The main reason that Shannon surprisal does not measure

meaning is that Shannon specifically chose not to consider

meaning in his theory of communication [3].

The Shannon surprisal [3] of an event x with probability

p is measured with

I(x) := − log2 p(x). (1)

From (1) we can see why Shannon surprisal does not

measure meaning. Consider a fair coin flip, where each side

has

p(side) = 0.5. (2)

According to Shannon’s surprisal, merely knowing that the

coin landed heads counts as 1 bit of surprisal for a fair coin,

since

I(side) = − log2 p(side)

= − log2 0.5

= 1. (3)

However, unless the coin flip is tied to an event of im-

portance, it is of little interest to us and is meaningless.

Meaningful sequences of symbols point to something beyond

the sequence, in the same way that a signpost is meaningful

because it refers to a destination.

To see the difference between Shannon’s concept of sur-

prisal and meaningful information, consider the phrase:

METHINKS_IT_IS_LIKE_A_WEASEL

a string of randomly generated letters of the same length:

HNKRCYDO_BIIIEDWPBURW_OIMIBT
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and the repetitive sequence:

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

The random sequence of letters has a higher surprisal than the

phrase, but it is meaningless. The repetitve sequence has zero

surprisal, and is also meaningless. The phrase is meaningful

because there is both an amount of surprisal (range of possible

letters) and the arrangement of letters refers to an external

context. So, we see that Shannon’s surprisal can bound,

but not capture meaningful information. Consequently, a

number of mathematicians have attempted to better measure

meaningful information.

2.2 Algorithmic Information
Always understood in a deterministic setting, algorithmic

information theory [4], derived independently by Kolmogorov

[5], Chaitin [6] and Solmonoff [7], is based on the insight

that the smallest program that will generate a random bit-

string is not shorter than the bitstring itself. Consequently,

bitstrings with generating programs that are shorter than

the bitstring will tend to be orderly and thus could have

meaningful structure.

Algorithmic information is the length of the shortest

program y∗ that generates a bitstring x when executed on a

computer (U),1

K(x) := min
y|U(y)=x

|y|. (4)

Chaitin [8] refers to

y∗ := arg min
y|U(y)=x

|y| (5)

as the elegant program for x. These elegant programs, unfor-

tunately, cannot be calculated due to the halting problem.

Algorithmic information can be measured in relation to a

context C. Access to context is analogous to having a library

in a programming language, or being able to call other pro-

grams in the file system. These context files are not counted

in the algorithmic information bit count. Conditioning algo-

rithmic information does not cause an increase in information

(beyond a constant used to distinguish contextual and context

free information),

K(x|C) ≤ K(x) +O(1). (6)

If the context does not help shrink the elegant program length,

it is simply not used.

2.3 Prefix-free Coding
We assume that all programs are written in a prefix-free [9]

(or self-delimiting [4]) form. “Prefix-free” is a term in coding

theory, which signifies a coding standard such that no code

word in the standard begins with any other code word in

the standard. This allows the codes to be “instantaneous”,

1More generally, on a universal Turing machine.

meaning each code word can be recognized as soon as it is

read. Non-instantaneous codes, such as the Morse code, need

further information read to signify when a code word ends

and another begins. An example of a prefix-free free coding

standard is the following set of code words, which do not

begin with any other code words in the standard:

• 0

• 10

• 110

• 1110

• 11110

• 11111

In the context of prefix-free Turing machines, “prefix-

free” means that no program begins with another program

that halts. Algorithmic information defined with a prefix-

free Turing machine has a number of useful properties. One

important property we will encounter later in this paper is

that prefix-free algorithmic information can be used to define

a semimeasure, a key element of the paper’s foundamental

proof.

2.4 Randomness Deficiency
The algorithmic information of a bitstring, by itself, does

not indicate whether a bitstring is meaningful or not. For

example, if a bitstring has 10 bits of algorithmic information,

and the bitstring is only 10 bits long, then the bitstring is

random and meaningless. On the other hand, if a bitstring

has 10 bits of algorithmic information, and the bitstring is 20

bits long, then it is compressible and might be meaningful.

So we see just knowing the algorithmic information of a

bitstring is insufficient to differentiate between meaningful

and meaningless bitstrings.

To address this difficulty, Kolmogorov proposed the con-

cept of “randomness deficiency” [4] where the algorithmic

information of the bitstring is subtracted from the length of

the bitstring,

δ(x) := `(x)−K(x). (7)

Martin-Löf demonstrated randomness deficiency is a universal

test for randomness [10].

The downside of this randomness deficiency metric is

that while it overcomes the problem of surprisal’s inability

to distinguish random and non-random sequences, it does

not identify meaningful information, as it would provide a

higher score for the repetitive sequence over the English text

sequence in our opening example.

Levin, a student of Kolmogorov, generalized randomness

deficiency [11] as

d(x/µ) := − log2(µ(x))−K(x). (8)
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We can see that (8) is a combination of Shannon surprisal

and algorithmic information.

More recently, Milosavljević derived a metric called “algo-

rithmic significance” [12], which is similar to the randomness

deficiency derived by Levin.2 The metric differs in that it uses

compression instead of algorithmic information, and thus is

a computable metric. Milosavljević’s metric is used to detect

patterns in DNA sequences [13–15], where the randomness

deficiency is measured by algorithmic compression.

These later variants of the randomness deficiency by Levin

and Milosavljević are an improvement over algorithmic in-

formation in regards to measuring meaning. The variants

allow us to give a higher score to the English text than to

the repetitive sequence by setting p(x) = 1 for the repetitive

sequence, which implies3

d(x) = − log2 1−K(x)

= 0−K(x)

< 0. (9)

Even so, these variants of the randomness deficiency met-

ric do not quite get us to meaningful information. The

deficiency metrics prefers rare, highly regular sequences over

the more complicated sorts of sequences that we consider

meaningful, i.e. English text. However, if we measured algo-

rithmic information in regards to a relevant context, such as

the English language, then according to (6) the randomness

deficiency will increase when encountering a sequence of En-

glish text. The metrics do not account for an independent

context, so cannot identify meaning.

2.5 Algorithmic Specified Complexity
Following this insight of the need for an external context in

randomness deficiency metrics, a new metric of meaningful

information is algorithmic specified complexity (ASC) [16],

ASC(x,C, p) := I(x)−K(x|C). (10)

Where

1. x is a bitstring generated by some stochastic process,

2. I(x) is the Shannon surprisal of x, also known as the

complexity of x, and

3. K(x|C) is the conditional algorithmic information of

x, also known as the specification.

ASC is itself a kind of “specified complexity”, which in

turn is an even broader generalization of randomness defi-

ciency. Specified complexity is a more general concept since

it can in theory also involve uncomputable resources, such

2Thanks to Dr. Tom English for bringing attention to Milosavl-
jević’s work.

3It must be the case that K(x) ≥ 1, because if the null symbol
is a halting program, then since all programs start with the null
symbol no other programs can be halting programs, according to
the definition of prefix-free algorithmic information.

as halting oracles [17–20]. The original definition of specified

complexity is in [21] and developed in [22].4 The concept of

specified complexity is a refinement of the explanatory filter

defined in [24].

The idea of specified complexity is to justify rejecting the

chance hypothesis in favor of an alternate hypothesis by using

an independent knowledge source to define a rejection region.

As long as the knowledge source is independent of the chance

distribution, it can be used to define the rejection region

after the fact. This is in contrast to traditional Fisherian

significance testing [25] where all hypotheses must be defined

before observing the event. 5

ASC is capable of measuring meaning by positing a con-

text C to specify an event x. The more concisely the context

describes the event, the more meaningful it is. The event must

also be unlikely, that is, having high complexity I(x). The

complexity is calculated with regard to the chance hypothesis

distribution p, which represents the hypothesis that x was

generated by a random process described by p, implying any

similarity to the meaningful context C is by luck. ASC has

been illustrated by its application to measure meaningful

information in images and cellular automata [26, 27].

ASC is probabilistic. Although a positive ASC score

could signify meaning, a positive score can also be achieved

by chance. The probability of achieving at least α bits of

ASC by chance is at most 2−α [1]. The improbability of ASC

has been generalized for any canonical specified complexity

in [28], where the criterion of canonical specified complexity

as possession of a kardis is also defined in [28].

Since the algorithmic information cannot be calculated,

we depend on upper bounding the algorithmic information in

ASC with a computable compression algorithm conditioned

on a context C, a generalization of Milosavljević’s approach in

[12]. The computable form of ASC is known as observed ASC

(OASC), and is a lower bound on the true ASC. Likewise, the

probability of at least α bits of OASC has probability that is

at most 2−α.

2.6 Advantage of Contextualized Randomness Defi-
ciency

The use of context distinguishes ASC from Levin’s general-

ized form of randomness deficiency in (8) and Milosavljević

algorithmic compression approach. The fundamentaly ad-

vantage is that the use of an independent external context

allows ASC to measure whether an event refers to something

beyond itself, i.e. is meaningful. Without the context, the

other randomness deficiencies perhaps can tell us that an

event is meaningful, but cannot identify what the meaning

4Dembski anticipated the incorporation of algorithmic infor-
mation into CSI in [21]. The use of algorithmic information and
randomness deficiency for defining specified complexity was also
recommended by Devine in [23], a few years after the derivation
of ASC.

5Fisher recognized the need for ad hoc hypotheses, but due
to not having a formalized definition of randomness, which Kol-
mogorov et. al later provided, his method was restricted to the a
priori selection of hypotheses [11].

Volume 2019 | Issue 2 | Page 3



Expected Algorithmic Specified Complexity

is. Thus, ASC’s use of an independent context enables novel

contextual specifications to be derived from problem domain

knowledge, and then applied to identify meaningful patterns,

such as identifying non-trivial functional patterns in the game

of life [26].

3. CONSERVATION OF EXPECTED ASC

Now we turn to the paper’s main result. Since there is a prob-

ability of generating positive ASC by chance, it is a question

whether the expected ASC produced by a chance hypothesis

can be positive. However, to prove our result regarding the

expectation of ASC we will need to transform K(x|C) into a

semimeasure, requiring more technical background

3.1 Universal Probability
The property of K(x) being prefix-free allows us to define

a “universal probability”. To understand how, we need to

understand Chaitin’s uncomputable, oracular Omega number.

The prefix-free set of halting programs follows the Kraft

inequality [9]

Ω :=
∑

y∈Yhalts

2−`(y) < 1, (11)

where Yhalts is the set of all halting programs. Ω is Chaitin’s

Omega number [9]. Omega is an oracle, because by knowing

Omega we could solve the halting problem. However, since

the halting problem is unsolvable, we cannot know Omega.

Now we turn to elegant programs. Since the elegant

program y∗ used to calculate the algorithmic information of

x halts when run on the universal Turing machine, elegant

programs Yelegant are a subset of Yhalts, i.e. Yelegant ⊂ Yhalts.
We know this to be the case since multiple halting programs

of different length output the same bitstring, yet they cannot

all be elegant programs. Thus, elegant programs are also

prefix-free and, from the Kraft inequality,∑
y∈Yelegant

2−`(y) < Ω < 1. (12)

We can define a semimeasure6 known as “universal prob-

ability”7 using prefix-free Kolmogorov complexity,

m(x) := 2−K(x). (13)

Similarly, we can express the conditional algorithmic in-

formation of the specification as a conditional form of (13),

m/C(x) := 2−K(x|C). (14)

Since m/C is defined on a subset of the elegant programs,

6While a probability distribution sums to one, a semimeasure
does not sum to one.

7m is called a “universal probability” because it multiplica-
tively dominates all computable probability distributions [4].

according to Equation (12) m/C will sum to less than one.∑
x∈X

m/C(x) =
∑
x∈X

2−K(x|C) < 1. (15)

3.2 Conservation of Expected ASC
Using the definition of ASC in Equation (10) and the semimea-

sure in Equation (14), application of Jensen’s inequality shows

us the expected ASC is

EX [ASC(X , C, p)] =
∑
x∈X

p(x)(I(x)−K(x|C))

=
∑
x∈X

p(x) log2

(
m/C(x)

p(x)

)

≤ log2

(∑
x∈X

p(x)

p(x)
m/C(x)

)

≤ log2

(∑
x∈X

m/C(x)

)
< log2 1 = 0. (16)

This means a chance hypothesis with distribution p gener-

ates negative expected ASC. The reason why (16) is a strict

inequality is due to (15), which demonstrates summing the

conditional universal probability results in a value less than

1, of which the logarithm is negative.

Since OASC is a lower bound on ASC, then Equation

(16) also implies,

EX [OASC(X , C, p)] ≤ EX [ASC(X , C, p)] < 0. (17)

3.3 Hypothesis Testing Application
The law of large numbers states that the average of a series of

experiments will approach the mean [2]. As such, we can test

Equation (16) empirically using the average of a large number

of events. In the empirical case, we rely on OASC, since ASC

is not calculable, so we will use the corollary Equation (17).

As an experiment we will generate bits according to distri-

bution q and compare the results to chance hypothes p, which

is not always the same as q. Both distributions are Bernoulli

distributions, and a specific distribution is represented by

B(α), where α is the probability of generating a 1.

Equation (17) states that when q = p, then the average

OASC will drop below zero. On the other hand, when q 6= p

the average OASC can be positive. Thus, according to the

law of large numbers, after enough samples a positive average

OASC indicates q 6= p.8 This approach to rejecting the

chance hypothesis is a form of hypothesis testing, which is

also addressed in regards to specified complexity in [24], [21],

[1], and [28].

We should note that these empirical results are not veri-

fying that expected ASC is always less than zero, since the

expected ASC in the following examples is calculated an-

8Absolute certainty is impossible due to requiring an infinite
number of samples to converge to the true mean.
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alytically, not empirically. On the other hand, the results

indicate that if we empirically observe positive average OASC

then we can reject the chance hypothesis distribution p in

favor of the empirical distribution q, since positive average

OASC implies positive expected ASC. Of course, the converse

does not apply: negative average OASC does not imply neg-

ative expected ASC. This is because OASC is a lower bound

on ASC, so some data may have negative OASC while also

having positive ASC.

The general procedure is as follows:

1. Generate 100 bitstrings from each q distribution, each

bitstring 512 bits long.

2. Calculate surprisal for each bitstring using the p distri-

bution.

3. Calculate the OASC by subtracting the compression

length from the surprisal for each bitstring.

For compression we use the Lempel-Ziv-Welch algo-

rithm that is trained on a 1,000,000 length bitstring

for each q distribution.

4. Average the OASC over the 100 bitstrings for each p

and q pair.

The results of the test are shown in Table 1, where we

expect the diagonal to be negative after enough trials.

As a sanity check, we also calculate the expected ASC for

each tuple, which must always be greater than the average

OASC, and consequently will be greater than the average

OASC after enough samples.

3.3.1 Shannon Entropy and the Kullback-Liebler Divergence

Before getting into the derivation of expected ASC in this

application, some more technical background is required re-

garding Shannon entropy. The Shannon entropy of a prob-

ability distribution p is the expected surprisal provided by

that distribution over the set of events X ,

H(p) :=
∑
x∈X

−p(x) log2 p(x). (18)

When the expectation of surprisal of q is taken with

regards to the distribution p the result is known as cross

entropy,

H(p, q) :=
∑
x∈X

−p(x) log2 q(x). (19)

The cross entropy between p and q is never less than the

entropy of p,

H(p, q) ≥ H(p). (20)

The Kullback-Liebler divergence is the difference between

the cross entropy and entropy, and is never negative,

D(q||p) :=
∑
x∈X

p(x) log2

(
p(x)

q(x)

)
=H(p, q)−H(p) ≥ 0. (21)

3.3.2 Derivation of Expected ASC

With these definitions in hand, we can analytically calculate

the expected ASC by using the Kullback-Liebler divergence

between q and p. This calculation is based on the following

information theory identities.

1. The expected surprisal of bitstring x, generated by

independently sampling n = `(x) bits from a Bernoulli

random variable Bq defined by q, where X represents the

corresponding series of random variables, with surprisal

calculated by p, is the cross entropy nH(q, p),

Eq[Ip(X )] = nEq[Ip(Bq)]

= n
∑
b∈Bq

−q(b) log2 p(b)

= nH(q, p). (22)

2. The expected algorithmic information of a sequence

x produced by independent samples of a computable

Bernoulli distribution q is Hq(X ) [4],

Eq[K(X )] ≤ Hq(X ) +K(q) +O(1). (23)

The inequality in (23) is due to the fact that Hq(X ) is

a lower bound on expected prefix-free coding of x ∈ X ,

thus is a lower bound on Eq[K(X )]. With the addition

of K(q) the entire distribution for x ∈ X is described,

taking into account a constant O(1) for overhead, which

means Eq[K(X )] cannot be larger than the righthand

side.

Since the terms K(q) and O(1) disappear aspymptoti-

cally as n increases, and Hq(X ) is the optimal expected

compression, we simplify Equation (23) to

Eq[K(X )] = Hq(X ) = nH(q). (24)

3. By combining Equations (22) and (24), we can conclude

that the expected ASC is

Eq[ASC(X , C, p)] = Eq[Ip(X )−K(X )]

= Eq[Ip(X )]− Eq[K(X )]

= n(H(q, p)−H(q))

= nD(q||p), (25)

where D(q||p) is the Kullback-Liebler divergence [9]

between q and p.

Since expected ASC is greater than expected OASC,
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this means

nD(q||p) ≥ Eq[OASC(X , C, p)]. (26)

3.3.3 Results

The calculated expected ASC using Equation (25) is shown

in Table 2. Based on the law of large numbers and the fact

that OASC is a lower bound on ASC, we expect the difference

of Table 1 subtracted from Table 2 to be positive, and when

average OASC is positive then expected ASC must also be

positive. The difference can be seen in Table 3, and Equation

(17) is consistent with the results in all cases.

4. CONSERVATION BOUNDS

Equation (16) shows that a random variable does not have

positive expected ASC. However, given that an event has a

measure of ASC, is it possible to use some form of stochastic

processing to increase the amount of ASC beyond that con-

tained in the original event? For example, what if we apply

a function f that always generates the same y for all x ∈ X ,

and y is not a member of X ?

In this case, given the probability distribution over x, it

is always the case that

p(f(x)) = p(y)

= Pr[X = y]

= 0, (27)

and thus

I(f(x)) = − log2 p(f(x))

= − log2 0

=∞ (28)

resulting in infinite ASC for K(f(x)|C) <∞,9

ASC(f(x), P, C) = I(f(x))−K(f(x)|C)

= −log20−K(f(x)|C)

=∞−K(f(x)|C)

=∞. (29)

This analysis suggests that ASC is not conserved.

However, Equation (29) only shows that ASC is not con-

served if the chance hypothesis is invalid due to incorrect

function application. To understand the conservation of ex-

pected ASC we have to look at the definition of a random

variable, and identify how applying a function to the random

variable affects the probability distribution. We then use

Equation (16) to prove ASC is conserved under stochastic

processing.

9This example was originally proposed by Dr. Tom English at
http://theskepticalzone.com/.

4.1 Random Variables

We will examine the discrete case, since ASC is defined on

discrete probability distributions. A discrete probability dis-

tribution p is a countable set of events. The set of events

is called the domain and signified by ζ. Each event has a

probability assigned

p := {ε ∈ ζ : 0 ≤ p(ε) ≤ 1} (30)

such that the sum of all values is equal to one,∑
ε∈ζ

p(ε) = 1. (31)

For example, the distribution for the roll of a fair die has

six events, each with probability 1
6
, and the sum of all event

probabilities is 1.

A random variable X is a function that assigns labels to

the events, i.e. giving each die face a number from 1 to 6.

The set of possible labels is called the range and signified

with Γ. Formally, the random variable X is

X : ζ → Γ (32)

The subset of the labels L ⊆ Γ used by X is called the image

of X . Thus, a random variable can also be defined as a set of

label/probability pairs, where each pair represents a labeled

possible event. To continue the die example, the random

variable representing the die is the set of pairs

X :=

{(
1,

1

6

)(
2,

1

6

)(
3,

1

6

)(
4,

1

6

)(
5,

1

6

)(
6,

1

6

)}
.

(33)

When we talk about the probability of an element of a

random variable, we are talking about a specific label, and

are summing the probabilities of all events that have that

label. So, when we write p(x) what we mean is

p(x) = Pr[X = x]

=
∑

ε∈ζ|X (ε)=x

p(ε). (34)

We can create a new random variable from X by applying

a transformation function to each event, essentially relabeling

X ’s image. For example,

Y := f(X ) (35)

means

Y := {f(x) : x ∈ X}. (36)
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Table 1: Average OASC of bitstrings generated from q distribution, measured using p distribution as chance hypothesis

q ↓ p→ B(2−5) B(2−4) B(2−3) B(2−2) B(2−1) B(1− 2−2) B(1− 2−3) B(1− 2−4) B(1− 2−5)

B(2−5) -29 -30 23 185 720 1419 1922 2213 2339
B(2−4) -20 -42 -23 71 475 1045 1476 1731 1844
B(2−3) 15 -29 -46 -23 243 678 1034 1251 1351
B(2−2) 112 42 -14 -71 42 326 599 774 860
B(2−1) 389 287 179 19 -67 22 187 308 375

B(1− 2−2) 878 744 584 322 37 -69 -13 54 102
B(1− 2−3) 1373 1214 1014 672 234 -22 -50 -25 9
B(1− 2−4) 1869 1688 1452 1039 462 71 -32 -44 -23
B(1− 2−5) 2366 2164 1894 1413 705 185 10 -38 -30

Table 2: Expected ASC of bitstrings generated from q distribution, measured using p distribution as chance hypothesis

q ↓ p→ B(2−5) B(2−4) B(2−3) B(2−2) B(2−1) B(1− 2−2) B(1− 2−3) B(1− 2−4) B(1− 2−5)

B(2−5) 0 9 62 242 780 1510 1965 2229 2378
B(2−4) 7 0 19 132 536 1133 1520 1750 1883
B(2−3) 41 16 0 43 305 761 1078 1273 1388
B(2−2) 135 91 36 0 106 406 644 801 896
B(2−1) 409 339 234 97 0 97 234 339 409

B(1− 2−2) 896 801 644 406 106 0 36 91 135
B(1− 2−3) 1388 1273 1078 761 305 43 0 16 41
B(1− 2−4) 1883 1750 1520 1133 536 132 19 0 7
B(1− 2−5) 2378 2229 1965 1510 780 242 62 9 0

Table 3: Expected ASC (Table 1) minus Average OASC (Table 2)

q ↓ p→ B(2−5) B(2−4) B(2−3) B(2−2) B(2−1) B(1− 2−2) B(1− 2−3) B(1− 2−4) B(1− 2−5)

B(2−5) 29 39 39 57 60 91 43 16 39
B(2−4) 27 42 42 61 61 88 44 19 39
B(2−3) 26 45 46 66 62 83 44 22 37
B(2−2) 23 49 50 71 64 80 45 27 36
B(2−1) 20 52 55 78 67 75 48 31 34

B(1− 2−2) 18 57 60 84 69 69 49 37 33
B(1− 2−3) 15 59 64 89 71 65 50 41 32
B(1− 2−4) 14 62 68 94 74 61 51 44 30
B(1− 2−5) 12 65 71 97 75 57 52 47 30
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so

p(y) = Pr[Y = y]

=
∑

ε∈ζ|Y (X (ε))=y

p(ε). (37)

While it seems simple, Equation (37) is important. As

an example, if we changed the die labels to “A”, “B”, and

“C”, then a possible random variable for the die is{(
A,

1

3

)(
B,

1

3

)(
C,

1

3

)}
. (38)

This example demonstrates how function application will

affect the surprisal of X . The function is operating on the

labels by replacing an existing label with a new label. This

means the function can merge labels, i.e. it can take labels “1”

and “2” and replace them with “A”. But, the function cannot

split a single label into multiple labels. So, the function

cannot take the “A” label and split it back into “1” and “2”.

Thus, according to Equation (37) applying a function to

a random variable can only produce a new set of labels that

have an equal or greater probability than the old set of labels.

So, we accordingly define the surprisal of function application

to be

I(f(x)) := − log2 (Pr[f(X ) = f(x)]) . (39)

This means function application can only maintain or decrease

surprisal,

I(f(x)) ≤ − log2 p(x) = I(x). (40)

4.2 Deterministic Conservation of Complexity

This gives us the basis to see why Equation (29) does not

disprove conservation of ASC. More formally, take the original

definition of ASC in (10),

ASC(x,C, p) := I(x)−K(x|C). (41)

and add f to get

fASC(x,C, p, f) := I(f(x))−K(f(x)|C). (42)

Applying (40) to the observation that ASC can never ex-

ceed the surprisal, we establish the conservation of complexity

for ASC,

fASC(x,C, p, f) < I(x). (43)

This means that if it appears applying a function increases

ASC beyond I(x), such as making it infinite in (29), then the

error lies in not properly transforming the random variable

X with the function.

Finally, as a corollary, using the new label random variable

defined as

L := f(X ), (44)

the result from (16) still applies,

EX [fASC(X , C, p, f)] = EL[ASC(L,C, p)] < 0. (45)

Additionally, since we are dealing with a random variable the

improbability of ASC still applies,

Pr[ASC(l, C, p) > α] ≤ 2−α. (46)

4.3 Stochastic Conservation of Complexity

What if f is not deterministic, but instead selected from a

set of functions, adding an element of randomness? In this

case, the surprisal I(f(x)) for some f(x) is potentially greater

than I(x) since the probability of selecting that f must also

be factored into the information calculation for the event x.

Thus, p is now the joint distribution over {x, f} and I(f(x))

is dictated by the joint probability of f and x. In this case,

p(x) and p(f) mean the corresponding marginal distributions.

To simplify notation, we can think of the stochastic pro-

cessing as a table with the various fs across the top and the

xs along the side. Each cell cij in the table contains a label l

that is assigned to the joint event that both fi and xj occur

together.

Here is a small illustration of the idea:

Table 4: Mapping f(x)

X ↓ F→ f1 f2 f3

x1 a b c
x2 a a a
x3 d e f

It is important to note labels can be shared between

different events and functions, e.g. c12 = c32 and c11 = c12

We can also create a corresponding probability distribu-

tion which we’ll denote P:

Table 5: Probability Distribution for f(x)

X ↓ F→ f1 f2 f3 marg.
x1 0.25 0.15 0.1 0.5
x2 0.125 0.075 0.05 0.25
x3 0.125 0.075 0.05 0.25

marg. 0.5 0.3 0.2 1.0

The set of all labels l in the table is the image of F , and

denoted L. The probability of a label occurring is conditioned

on x, since the probability of which function is applied to

x is dependent on the fact that x occurs. The conditional

probabilities p(l|x) are calculated

p(l|x) =
∑

f∈F|f(x)=l

p(f |x). (47)

For example, we can apply (47) to Table 4 and see p(a|x2) = 1.
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The joint probability is

p(l, x) = p(l|x)p(x), (48)

and the corresponding information of the joint probability

for {l, x} is

I(l, x) = − log2 p(l, x), (49)

which can be broken apart into

I(l, x) = − log2 p(l|x)p(x)

= − log2 p(l|x)− log2 p(x)

= I(l|x) + I(x). (50)

With (47) and (50) in place, and applying the funda-

mental result from (16), the expected ASC under stochastic

processing for a particular event is

EF [fASC(x,C, p, F )] =
∑
l∈L

p(l|x)(I(l, x)−K(l|C))

=
∑
l∈L

p(l|x)(I(x) + I(l|x)−K(l|C))

=
∑
l∈L

p(l|x)I(x)+

∑
l∈L

p(l|x)(I(l|x)−K(l|C))

= I(x) +
∑
l∈L

p(l|x) log2

(
m/C(l)

p(l|x)

)

≤ I(x) + log2

(∑
l∈L

p(l|x)

p(l|x)
m/C(l)

)

= I(x) + log2

(∑
l∈L

m/C(l)

)
< I(x) + log2 1

= I(x). (51)

To apply (51) to the ongoing illustration, we need to define

a context C that maps the labels to a prefix-free coding,

Table 6: Code
l C[l]

a 0
b 10
c 110
d 1110
e 11110
f 11111

Taking the expected fASC for the three x events in our

illustration we get the following values, consistent with (51):

Table 7: Expected fASC
x p(x) I(x) EF[fASC(x,C,P,F)]

x1
1
2

1.0 0.785
x2

1
4

2.0 1.0
x3

1
4

2.0 -1.01

4.4 Stochastic Conservation of Expected ASC
What if we take the expectation over both F and X? The

results in Table 7 suggests this expectation will be positive:

0.785

2
+

1.0

4
+
−1.01

4
= 0.388. (52)

However, in this case, we are taking the expectation with

regard to the label distribution p(l), which is the new chance

hypothesis, and get the same sort of result as in (16),

EX ,F [fASC(X , C, p,F)] = EL[ASC(L,C, p)] < 0. (53)

Additionally, since L is a random variable, then the improba-

bility of ASC applies,

Pr[fASC(x,C, p, f) ≥ α] = Pr[ASC(l, C, p) ≥ α] ≤ 2−α.

(54)

Doesn’t this analytic result contradict our example, which

appears to produce a positive expectation in (52)? The key to

this apparent contradiction is in our observation in note #2

below Table 4, that labels are not only shared between cells

on the same row in Table 4, but also between rows. Thus,

when we perform a weighted sum of the results in Table 7 we

get the positive result in (52) because we are counting the

label a twice: once for the x1 row and a second time for the

x2 row.

When we only count each label once, we get the following

table:

Table 8: Expected Label ASC
l p(l) I(l) K(l|C) ASC(l,C,P)
a 0.5 1.0 1 0.0
b 0.15 2.74 2 0.74
c 0.1 3.32 3 0.32
d 0.125 3.0 4 -1.0
e 0.075 3.74 5 -1.26
f 0.05 4.32 5 -0.68

Taking the weighted sum of Table 8, we get

0.5× 0 + 0.15× 0.74 + 0.1× 0.32 + 0.125×−1

+ 0.075×−1.26 + 0.05×−0.68 = −0.11 (55)

which is consistent with (53). This resolves the apparent

contradiction between (52) and (53), demonstrating ASC is

conserved under stochastic processing in the example.

5. CONCLUSION
Standard information theory cannot account for meaningful

information. Algorithmic specified complexity can, but it is

a probabilistic quantitiy. One question we have addressed is:

can the expected ASC be positive? We proved the expected

ASC is negative, and provided empirical application of the

claim with OASC. We then use the negativity of expected

ASC to prove a conservation of expected ASC under stochastic
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processing, and determistic and stochastic conservation of

complexity for individual events.
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