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INTRODUCTION
Nearly all cerebrospinal fluid (CSF) flow and cerebral arte-

rial and venous blood flow is pulsatile [1-4]. Capillary blood 
flow is nearly smooth [5,6,7]. The pulsatility of the CSF closely 
resembles the pulsatility of the intracranial veins [8,9], both of 
which have some characteristics of an arterial pulse, including, 
under some circumstances, a dicrotic notch [10]. 

Many aspects of the pulsatility of intracranial blood and CSF 
are difficult to understand, particularly because the pulsatile 
flow occurs in a rigid cranium which places obvious constraints 
on pulsatile dynamics. How is it that capillary blood flow is 
smooth, whereas the blood flow in the intracranial arteries and 
veins—sometimes only millimeters away from the capillar-
ies— is quite pulsatile [3]? Why does the pulsatility of the veins 
resemble the pulsatility of the CSF [9]? Why do the CSF and 
venous pressure pulse waveforms have some characteristics of 

an arterial pulse [10]? Why does the intracranial pressure (ICP) 
pulse normally precede the arterial blood pressure (ABP) pulse, 
but lag with intracranial hypertension [1,6,11-14] (fig 1)? 

I propose that a useful approach to understanding these 
counterintuitive aspects of intracranial pulsatility is to consider 
the dynamics of the cerebral windkessel as that of a designed 
system. Such a system manifests design principles that accom-
plish specified goals, which for the cerebral windkessel is the 
buffering of arterial pulsatility—an unwanted ‘vibration’—in 
cerebral blood flow, while at the same time maintaining opti-
mal cerebral blood flow and minimizing energy dissipation. 
This approach to exploring intracranial pulsatility entails 
reverse engineering of the cerebral windkessel, in accordance 
with established engineering principles of vibration control. 
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The cerebral windkessel is the suppression of the arterial pulse in the cranium which renders capillary blood flow smooth. Arterial 
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CONSERVATION OF MASS AND ENERGY IN 
THE CRANIUM

The Monroe-Kellie doctrine, which is the traditional frame-
work by which intracranial pulsatility is understood, is an 
assertion of mass conservation. The cranium contains three 
incompressible fluids, and an increase in one must equal a 
decrease in another, or intracranial pressure will rise. However, 
as a model of intracranial dynamics, the Monroe-Kellie prin-
ciple of mass conservation is incomplete. 

Energy, as well as mass, is conserved in the cranium. The 
energy inflow into the cranium must equal the energy outflow. 
The flux of energy associated with blood flow through the 
cranium entails exchange of inertial kinetic energy and elastic 
potential energy during the cardiac cycle, and like the flux of 
mass, it entails physiological constraints. The energy flux must 
not damage delicate tissues, and energy associated with blood 
flow must efficiently propel blood.

Energy flux in the cranium may be constant or change with 
time. Time-changing flux is pulsatile, and pulsatile blood flow 
endangers capillary beds and poses obstacles to cerebral blood 
flow. The means by which vascular pulsations are buffered 
and by which blood flow is optimized is the windkessel [1,14] 
which is present in all organs [7,15,16]. 

Because the vasculature is encased in a rigid cranium, the 
cerebral windkessel has unique properties. The purpose of this 
paper is to review the empirical evidence for the cerebral wind-
kessel, to examine and model its properties in detail, and to 
explore its physiological implications. 

THE EVIDENCE FOR THE CEREBRAL 
WINDKESSEL

Over the past two decades, investigators have studied the 
suppression of pulsatility in the cranium in some detail, and 
several characteristics of the cerebral windkessel have emerged. 

Intracranial pulse amplitude is minimal in normal 
dynamics. 

It is well known that the amplitude of the ICP pulse is at 
a minimum in normal dynamics, compared with the ampli-
tude of the pulse in intracranial hypertension [1,17]. However, 
intracranial hypotension also raises ICP pulse pressure [18]. 
Normal ICP represents minimal pulse amplitude compared to 
both high and low mean ICP [19]. 

Our traditional understanding of pressure-volume relation-
ships in the cranium does not provide an explanation for the 
paradoxical increase in ICP pulse amplitude at below-normal 
ICP, which should be smaller than the amplitude at normal 
ICP, in accordance with our understanding of the pressure-vol-
ume response of the cranium in a state of high compliance. It is 
remarkable that normal ICP pulse pressure is an extremum of 
low amplitude, compared with states of abnormally low com-
pliance and abnormally high compliance in the cranium. 

Brain expansion in systole with normal dynamics is minimal 
as well. Greitz measured brain expansion and arterial, CSF and 
venous volume displacement in normal controls during systole 
and diastole using flow MRI [3]. He found that brain expan-
sion (the microvascular volume displacement) was ordinarily at 

Figure 1. Phase relationships between the arterial pulse and the ICP pulse.  Left: During normal dynamics, the ICP (dotted line) pulse slightly 
precedes the carotid arterial pulse (solid line) [1,6,11-14]. Wagshul et al found a lead of ICP with respect to arterial pressure averaging one-sixth of the 
cardiac cycle.  Right: With elevation of ICP, the ICP pulse lagged the carotid arterial pulse. Such phase relationships cannot be explained if the ICP 
pulse is the transmission of the arterial pulse through the cranium, either as a bolus of blood through the capillaries or as a transmitted compression 
wave. The phase lead of ICP in normal dynamics and phase lag of ICP with intracranial hypertension suggest that the ICP pulse is a standing wave in 
the cranium that is excited by the arterial pulse. Standing waves can have leading or lagging phase relationships with exciting waves. Reprinted from 
Wagshul et al [14] with permission. doi:10.5048/BIO-C.2019.3.f1
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a minimum and was only two percent of arterial expansion. 
He found that in hydrocephalus, this brain expansion increases 
markedly. Brain expansion in the cardiac cycle is caused by 
microvascular volume shifts, so this represents direct measure-
ment of the cerebral windkessel. 

The arterial pulse diverts through the CSF to the veins.
Many investigators have observed volume conduction of the 

arterial pulse through the CSF to the veins, bypassing the capil-
laries. Bateman has demonstrated arterial-CSF linked venous 
compression in systole and re-expansion of intracranial veins 
in diastole [20-23]. Foltz has called this CSF-mediated venous 
compression and re-expansion that is synchronous with the car-
diac cycle “venous volume venting” [18].

Normal pressure and flow waveforms in the cranium are 
nearly synchronous.

Using flow MRI, Greitz found that pulsatile CSF flow (at the 
foramen magnum), arterial flow, and venous flow are normally 
synchronous throughout the cardiac cycle and are in phase with 
the arterial pulse [3].

The normal ICP pulse slightly precedes the arterial 
pulse. 

As noted, the normal ICP pulse slightly leads the ABP 
pulse. This was first demonstrated by Nitta [11], and has been 
observed by several investigators [6,11-14]. The lead is evident 
in the time domain (fig 1), and transfer function analysis shows 
a moderate leading phase of about 60 degrees at the heart rate 
frequency, which persists across most of the windkessel notch 
[14,24]. This of course is profoundly counterintuitive. In the 
cranium, it would seem that the output (the ICP pulse) pre-
cedes the input (the ABP pulse). This phenomenon is only 
explainable if we gain a deeper understanding of the ICP pulse 
and of the dynamics of the cranium. 

Transfer function analysis of ABP pulse to ICP pulse 
shows a local minimum of amplitude response (the 
windkessel notch) at the heart rate.

Waveforms such as the ABP waveform and the ICP wave-
form can be decomposed mathematically into component sine 
waves of varying frequency, amplitude and phase, the sum of 
which is the original waveform. This process of decomposition 
of a waveform into its constituent harmonic components is 
called Fourier analysis. Notably, in an oscillator the harmonic 
motions represented by the Fourier components of the wave-
form are actual physical modes of oscillation in the system; real 
objects oscillate with a superposition of modes of vibration of 
discrete frequency, amplitude and phase. 

Input of a waveform into a system produces an output 
which is also a waveform, and the ratio of input to output for 
each Fourier component (each sine wave) is called the transfer 
function and can provide important information about the sys-
tem. The amplitude transfer function describes the amplitude 
response of the system for each Fourier component, and the 
phase transfer function describes the phase shifts the system 

imposes on the Fourier components of the input waveform 
to yield the output waveform. Analysis of waveforms without 
Fourier decomposition is called analysis in the ‘time domain’, 
and analysis of the waveforms by Fourier components is called 
analysis in the ‘frequency domain’. 

Transfer function analysis has been done on the cranium by 
several investigators, using the arterial pulse as the input and 
the ICP pulse as the output. It has shown a consistent local 
suppression of amplitude response—a notch—at the frequency 
of the heart rate [14,24-27]. This represents minimal pulsatil-
ity at normal dynamics. The notch is surrounded by two high 
amplitude peaks, roughly symmetrical, at higher and lower fre-
quencies. 

I will discuss transfer function analysis of the cerebral wind-
kessel in more detail in the discussion of the mathematics of the 
damped windkessel. 

Abnormal intracranial dynamics attenuates the notch
While the windkessel notch appears to be a feature of normal 

intracranial dynamics, several investigators have shown ablation 
of the windkessel notch in animals with elevated ICP [14,27] 
and restoration of the notch with restoration of normal ICP 
[14]. Ablation of the windkessel notch has been observed in 
hydrocephalus in animals [27] and humans [26].

Abnormal intracranial dynamics shifts phase, in 
accordance with the mathematical description of 
impedance phase. 

Wagshul et al [14] (fig 1) have demonstrated changes in 
phase in the time domain and in the phase of the fundamen-
tal (heart rate) harmonic in the frequency domain associated 
with alteration of ICP. The phase shift is a lead of the ICP with 
intracranial hypotension and a lag of the ICP with intracranial 
hypertension. This demonstrates that the phase relationship 
between the ICP pulse and the ABP pulse is not fixed but varies 
in a consistent way with alterations of intracranial dynamics. 

THE ICP PULSE AS A HARMONIC 
OSCILLATOR WITH A SINGLE DEGREE OF 
FREEDOM

The windkessel is an essential feature of capillary circulation 
[7,15], and it is clear from multiple lines of evidence that it 
exists in the cranium [1,3,5,6,20-27]. The cerebral windkessel 
has distinctive features, and careful consideration of the nature 
of the ICP pulse and an exploration of the oscillatory properties 
of the cranium—including some properties that are profoundly 
counterintuitive— suggests that a specific kind of dynamics 
underlies it. 

Fundamental to our understanding of windkessel dynamics is 
an understanding of the physical nature of the ICP pulse itself.

The ICP pulse 
In ordinary clinical practice, the ICP pulse is generally 

understood as the propagation of the arterial pulse through the 
cerebral vasculature. Although this seems intuitively correct, 



Volume 2019  |   Issue 3 |   Page 4

The Cerebral Windkessel as a Dynamic Pulsation Absorber

it is mistaken. The cerebral windkessel effect minimizes the 
propagation of the arterial pulse through the microvasculature, 
so there is no ‘bolus’ of blood traversing the brain parenchyma 
that would give rise to a pressure wave. This is clearly seen at 
surgery when the cortex is incised. At the capillary level, blood 
flows smoothly as a gentle seepage, not in a pulsatile fashion. 
Furthermore, as noted above, the normal ICP pulse slightly 
precedes the arterial pulse [1,6,11-14], obviously ruling out the 
hypothesis that the ICP pulse is the propagation of the arterial 
bolus of blood through the microvasculature. 

Some investigators have instead regarded the ICP pulse as 
the nearly instantaneous transmission of the arterial pressure 
compression wave through the cranium, similar to the propaga-
tion of a wave in water or a sound wave in air [28]. There are 
problems with this view as well [6].

The amplitude of a traveling pressure wave decreases on the 
inverse of the distance from the source [29]. If the ICP pulse 
is the transmitted arterial wave, the amplitude of the ICP pulse 
should vary inversely with the distance from a strong source of 
the arterial pulse—i.e. the amplitude of the transmitted ICP 
pulse in the cranium should vary considerably with location. 
For example, the amplitude of an ICP pulse measured in the 
brain parenchyma one centimeter from the carotid bifurcation 
should be ten times larger than the amplitude of an ICP pulse 
in the brain parenchyma in the centrum semiovale, ten centi-
meters away. This effect is not observed. The amplitude of the 
ICP pulse is roughly the same throughout the cranium, regard-
less of the distance from a strong arterial source.

In addition, traveling pressure waves reflect off surfaces, 
which is the principle on which ultrasonography is based. 
Given the many complex surfaces in the cranium, the ICP pulse 
(if it were a transmitted wave) would be expected to be ‘granu-
lar’ with respect to location, with hyperechoic and hypoechoic 
regions near surfaces. Such an effect is not observed. 

Furthermore, the transmission of pressure wave in water (the 
contents of the cranium are mostly water) is very fast—4,900 
feet per second [6]. Thus, if the ICP pulse were a transmitted 
pressure wave, it should be synchronous with the arterial wave 
that generated it. 

However, the ICP wave is often quite asynchronous with the 
arterial wave. Investigators have found that the ICP pulse can 
occur significantly after the arterial pulse [6,11,14], by an inter-
val that would not be consistent with a pressure wave traveling 
at 4900 feet per second in the cranium. 

And of course, as noted above, many investigators have found 
that the ICP pulse can occur before the arterial pulse [1,6,11-
14]. Clearly, the ICP pulse cannot be a transmitted arterial 
wave if the ICP pulse precedes the arterial pulse. 

If the ICP pulse is not a bolus of blood traversing the micro-
vasculature nor transmitted pressure wave, what is it? The 
cranium is a chamber with elastic content (the displaceable 
venous blood [17]) that is that is rhythmically driven by the 
heartbeat. Such dynamics gives rise to a standing wave, which 
differs considerably from a transmitted wave. 

A standing wave is a stationary wave that oscillates but does 
not travel beyond the confines of the cavity that contains it. 

It consists of two superimposed waves—a wave excited by an 
external force and a wave reflected by the elastic contents of the 
cavity. Elastic cavities—such as hollow musical instruments—
typically produce standing waves inside their chambers. The 
sound wave inside a violin or a clarinet is a standing wave.

It is important to recognize, furthermore, that the ICP wave 
is evoked in response to the ABP wave, but does not represent 
the ABP wave itself. The ABP pulse excites an ICP wave that is 
equal and opposite to it, in accordance with Newton’s third law. 
The ICP pulse is a standing wave generated in the cranial cavity 
that is excited by the arterial pulse. 

The ICP standing wave is the composite of three forces: 1) 
inertial force, which is generated by the opposition by the cra-
nial contents to accelerated motion 2) the elastic force, which 
is generated by the opposition by the cranial contents to unac-
celerated motion 3) resistive/damping force, which dissipates 
energy and is generated by the opposition by the cranial con-
tents to all motion. Inertial force is generated by the ABP pulse 
and the ICP pulse, which are equal in mass. Elastic force is 
generated primarily from the compression and re-expansion of 
cerebral veins. Resistive/damping force is the combination of 
viscous resistance of fluids and structural damping of tissues. 
These three forces are generated by the cranial contents in reac-
tion to the ABP pulse, and their sum is the ICP pulse. The ICP 
pulse is equal and opposite to the ABP pulse, in accordance 
with Newton’s third law.

What does it matter that the ICP pulse is a standing wave, 
rather than a bolus propagated through the microvasculature 
or a transmitted wave? Standing waves have complex dynamics 
not inherent to transmitted waves. For example, the phase lead 
of the ICP pulse with respect to the ABP pulse [14] can be 
readily explained by consideration of the phase transfer func-
tion of the ABP pulse and the ICP pulse (discussed in more 
later in this review). The ABP pulse is composed of individual 
harmonics, which are sine waves (modes of oscillation) that 
have a frequency, amplitude and a phase. The cranium has its 
own natural spectrum of harmonics, which are not identical to 
the harmonics of the ABP pulse. The ABP pulse is an energy 
pump, and the cranium transfers the energy of the ABP pulse 
to the ICP pulse. The energy is transferred in the form of modes 
of oscillation of various frequencies, amplitudes and phases. 
The cranium has natural modes of oscillation that differ in fre-
quency, amplitude and phase from the ABP spectrum, and the 
ABP spectrum excites and suppresses various modes of oscilla-
tion in the cranium. The dynamics are such that the cranium 
amplifies the leading phase components of the ABP pulse and 
shifts phase of the fundamental (heart beat) frequency to posi-
tive, thereby yielding a leading ICP pulse. Leading and lagging 
phases are characteristic of cavity resonators in the steady state 
driven by external pulsations. 

The cranium is a cavity resonator—an elastic chamber that 
contains standing waves set in rhythmic motion by the arterial 
pulse. Cavity resonators exhibit such characteristics as phase, 
impedance, reactance, resonances, and anti-resonances, and 
have the potential to influence cerebral physiology in non-
intuitive ways. 
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The ICP pulse and kinetic and potential energy
To understand the dynamics of the ICP pulse, an extension 

of the Monroe-Kellie doctrine is necessary. The Monroe-Kellie 
doctrine is a statement of mass conservation: mass entering the 
cranium must equal mass leaving the cranium, or pressure will 
rise. But whereas mass is conserved in the cranium, energy is 
also conserved. The ICP pulse is a cyclic exchange of kinetic 
and potential energy between the inertial and elastic forces in 
the cranium. It is only by the study of this energy exchange that 
the ICP pulse can be properly understood. Energy conservation 
in the cranium mirrors mass conservation: energy that enters 
the cranium is equal to energy that p19leaves the cranium, just 
as mass that enters the cranium is equal to mass that leaves the 
cranium. 

The total energy associated with normal intracranial pulsatil-
ity remains constant; blood and CSF oscillate in the cranium 
via the exchange of kinetic and potential energy, and energy and 
mass flow through the cranium. The ICP pulse is the rhythmic 
steady state exchange of kinetic and potential energy. 

Application of mathematics of harmonic motion to 
intracranial dynamics

It is useful to begin the exploration of windkessel dynam-
ics with this question: to what extent is the application of the 
mathematics of harmonic motion applicable to a system as 
complex as the cranium and to phenomenon such as the ICP 
pulse?

As we will see, this simplification of pulsatile intracranial 
dynamics to harmonic motion is physically justified. Oscil-
latory motion in nature has a remarkable property: for small 
amplitude and energy, which certainly applies to the ICP pulse, 
the mathematics of simple harmonic motion describes the dynamics 
quite well. Simple harmonic motion in a vast variety of physi-
cal systems consists of relatively small periodic displacement of 
the system from equilibrium, followed by restoration and over-
shoot of that equilibrium. This is in a sense a ‘potential well’ in 
which the system is confined, analogous to a marble oscillating 
in the bottom of a round bowl. The restoring force is provided 
by energy exchange between potential and kinetic energy. 

Nearly all potential wells encountered in nature are essen-
tially parabolic for small displacements. The mathematical 
justification for this is easily seen. For a simple harmonic oscil-
lator consisting of an oscillating mass and spring, the restoring 
(elastic) force for the simple harmonic motion is 

 
Where F is the elastic force, k is the spring constant (the 

elastance) and x is the displacement of the oscillator. The 
potential energy USHM of the simple harmonic motion is a func-
tion of displacement and is the work expended to compress or 
stretch the spring, and is given by:

U kx dx kx
2SHM
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Now consider the potential energy UICP
of the ICP pulse, 

which is physically more complex than a simple harmonic oscil-
lator. The potential energy of the ICP pulse is a function of 

F kx=

displacement and can be expanded according to Taylor’s theo-
rem, which states that any function f x)(  that is continuous and 
possesses derivatives of all orders at x=a can be expanded in a 
power series in ( x a− ) close to the region of x a= . All potential 
wells involving small displacements (e.g. the ICP pulse) can be 
described by functions that can be expanded in a power series.

Taking the equilibrium position of the ICP pulse as x 0ICP = , 
we expand the function U xICP ICP )(  for the potential energy of 
the ICP pulse around x 0ICP = :
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U 0ICP )( is a constant and has no physical relevance to the ICP 
pulse, because the potential energy can be measured from any 
initial position and can be arbitrarily set to zero.
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evaluated at x 0=  is a constant. We discount the higher order 
terms (with large factorials in the denominators), which is 
appropriate as long as the displacement xICP of the pulse is 
small. The potential energy of the ICP pulse is
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As long as the ICP pulse is relatively small, the constant for the ICP pulse is essentially 
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displacement of the pulse is a reasonably good fit to the parabolic curve of a simple harmonic 

oscillator when the ICP pulse is small (fig 2).  

This approximation of nature to simple harmonic motion applies to a large range of 

systems, including gravitational waves, water waves, masses attached to springs, oscillations of 

atoms in lattices, the flow of electrons in circuits, and quantum mechanical behavior of subatomic 

particles. The mathematics of simple harmonic motion can be applied with reasonable accuracy to 

the dynamics of the ICP pulse, because, for small displacement, all systems in oscillatory motion 

in a potential well conform approximately to simple harmonic motion.  

We will use this principle to explore the dynamics of the cerebral windkessel.  
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for the ICP pulse is essentially the spring constant for a simple 
harmonic oscillator: 
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Thus, the potential energy of the ICP pulse is approximately 
equal to the potential energy of a simple harmonic oscillator:
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Conceptually, we can say that a graph of the potential energy 
well of the ICP pulse plotted against displacement of the pulse 
is a reasonably good fit to the parabolic curve of a simple har-
monic oscillator when the ICP pulse is small (fig 2). 

This approximation of nature to simple harmonic motion 
applies to a large range of systems, including gravitational 
waves, water waves, masses attached to springs, oscillations of 
atoms in lattices, the flow of electrons in circuits, and quantum 
mechanical behavior of subatomic particles. The mathemat-
ics of simple harmonic motion can be applied with reasonable 
accuracy to the dynamics of the ICP pulse, because, for small 
displacement, all systems in oscillatory motion in a potential 
well conform approximately to simple harmonic motion. 

We will use this principle to explore the dynamics of the cere-
bral windkessel. 

Correspondence between the cerebral windkessel and 
mechanical and electrical oscillators

The subtleties of forced harmonic motion have been worked 
out in considerable detail for a variety of physical systems. There 
is a correspondence between the dynamics of a mechanical 
vibration absorber, a parallel “wavetrap” electrical circuit, and 
the cerebral windkessel, which, as we will see, is the organizing 

principle of pulsatile intracranial dynamics. These systems are 
described by analogous differential equations. 

Pressure, flow and volume
Systems in forced oscillatory motion are driven to periodic 

displacement from equilibrium and return to equilibrium. The 
oscillatory motion occurs because of overshoot: the oscillator 
overshoots the equilibrium position, and restoring forces push it 
back to equilibrium, only to have the oscillator overshoot again. 
The externally applied force interacts with this displacement 
and restoration/overshoot in complex ways. This is common to 
all forced oscillators, including the ICP pulse. 

All forced oscillators exhibit three interrelated variables: 
force, velocity, and displacement. In linear mechanical systems, 
force, velocity and displacement refer to the forces acting on 
the mass in oscillation, to the velocity of the mass, and to the 
displacement of the mass, respectively. In torsional mechani-
cal systems, torque, angular velocity and angular displacement 
are the force, velocity and displacement variables. In electrical 
systems, voltage, current and charge are the force, velocity and 
displacement variables.

In the dynamics of the ICP pulse, pressure is the force vari-
able, flow is the velocity variable, and volume (of the pulse) is 
the displacement variable. A proviso is noted regarding flow: for 
the purposes of the windkessel, flow refers to the radial motion 
of capillary walls and the radial motion of the cranial contents, 
not specifically to the longitudinal flow of blood and CSF, as 
flow is commonly understood. Longitudinal flow of blood and 
CSF of course bear relation to radial motion of capillaries and 
cranial contents, but the relationship is complex and is beyond 
the scope of our discussion. By “flow” in windkessel dynamics I 
will mean the radial velocity of expansion and relaxation of the 
vasculature and of the contents of the cranium. As will become 
evident, radial expansion of the vasculature during the cardiac 
cycle is of great importance in intracranial physiology. 

It is important to note that this discussion applies only to the 
pulsatile forces and flow in the cranium. Smooth bulk flow of 
blood and CSF are obviously of great physiological interest, and 
are related to pulsatile flow (radial motion) of fluids and tissues, 
as we will see. But impedance refers to opposition to flow in a 
pulsatile system, and in this discussion we will limit the analysis 
of impedance to radial pulsatility of the cranial contents. This is 
appropriate, because the windkessel mechanism is a system that 
suppresses radial motion of the microvasculature. 

The ICP pulse may be approximated, with increasing accu-
racy to the physical reality of the pulse, as a simple harmonic 
oscillator with one degree of freedom, or as a forced harmonic 
oscillator with damping with one degree of freedom, or as an 
undamped windkessel with two degrees of freedom, and or as 
a damped windkessel with two degrees of freedom. Degrees of 
freedom refer to the pathways through which the pulse can travel 
and specifies the number of equations necessary to describe the 
motion. Each level of increasingly accurate approximation and 
increasing complexity will be examined in the discussion that 
follows.

Figure 2. The ICP pulse and simple harmonic motion. The ICP pulse 
consists of the rhythmic exchange of inertial kinetic energy and elastic 
potential energy during the cardiac cycle. Kinetic energy of the cranial 
contents peaks in mid-systole and mid-diastole, and potential energy 
peaks in the transitions between systole and diastole and diastole and 
systole. This exchange of energy is oscillation in a potential well, akin to a 
marble oscillating in a round bowl. This figure shows the parabolic curve 
of the mathematical description of potential energy of a simple harmonic 
oscillator (solid line) and the schematic curve of potential energy of an 
ICP pulse (dotted line). The abscissa is the displacement of the oscillation 
and the ordinate is the potential energy U . For small displacement, the 
mathematical description of a simple oscillator is superimposable on 
the curve of the ICP pulse, meaning the potential energy well is nearly 
parabolic. doi:10.5048/BIO-C.2019.3.f2

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f2
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The simple harmonic oscillator 
We begin the discussion of the dynamics of the cerebral wind-

kessel by applying the mathematics of simple harmonic motion 
with one degree of freedom to the ICP pulse. We can think of 
the (nearly) harmonic motion of the ICP pulse as oscillation of 
the cranial contents induced by a radial displacement (expan-
sion). The cranial contents relax, overshoot, and rebound in a 
periodic motion. We will discount the effect of the heartbeat 
for now and consider only the natural unforced ‘vibration’ of 
the cranial contents. We will assume no damping, so the vibra-
tions of the cranial contents continue unabated. The equation 
of motion for the ICP pulse, to a first order of approximation, 
is analogous to the equation of motion for a mass m attached 
to a massless spring with spring constant k displaced to x  
and left to oscillate. There is a rhythmic exchange of kinetic 
and potential energy by the inertial and elastic forces in the 
cranium. The force of the elastic displacement and the inertial 
force are the only two forces acting, and they are equal and 
opposite in direction. The equation of motion of this simple 
unforced ICP pulse is

m x k xICP ICP ICP ICP= − 

where mICP  is the mass of the ICP pulse (the mass of the fluid 
displaced), xICP  is the acceleration of the ICP pulse with respect 
to time, xICP  is the displacement (volume) of the pulse and kICP  
is the elastance of the ICP pulse. The equation may be written 
as

x xICP ICP
2ω= −

 
Where 2ω  may be understood as the restoring force per unit 

mass per unit displacement and 
k
m
ICP

ICP

ω =
 

represents the natural frequency of oscillation of the ICP pulse, 
expressed in angular units (radians/sec). 

If we assume no damping, the ICP pulse will oscillate indefi-
nitely at frequency ω , undergoing displacement, restoration, 
overshoot, etc. with period

  
T 2π

ω
=

 

The solution to the differential equation for the motion of 
the ICP pulse is

x x tcosICP 0 ω ϕ)(= + 

where xICP is a cosine wave with maximum volume displace-
ment x0 , and ϕ is the phase angle of the displacement. 

Forced harmonic motion and the ICP pulse
In the next level of accuracy and complexity, we will consider 

the ICP pulse as a forced harmonic oscillator with damping 
with one degree of freedom. The ICP pulse is driven by the arte-
rial pulse and is equal and opposite to it. As such, the ICP pulse 
is the reaction of the cranial contents to the arterial pulse and 
is forced periodic motion. It is the composite of three forces: 

inertial force, damping force and elastic force. The equation of 
motion for the ICP pulse, understood in its simplest form as a 
damped single-degree-of-freedom oscillator undergoing forced 
harmonic motion, is

 m x c x k x P tsinICP ICP ICP ICP ICP ICP 0 ω+ + = 

where xICP  is the displacement volume variable, mICP  is the 
mass of fluid and tissue displaced by the pulse, cICP is the damp-
ing of the cranial contents, kICP  is the intracranial elastance and 
P0 is the maximal pressure of the ICP pulse. 

There are several ways to solve this equation and explore 
the dynamics it represents, and for our purposes phasor 

Figure 3. Phasor representation of the ICP pulse. The motion of the 
ICP pulse is driven by four forces, which can be depicted on the complex 
plane. Maximal displacement volume x0 is a phasor pointing along 
the positive j  axis at time t . Elastic force k xICP ICP−  with amplitude 
k xICP 0  opposes displacement and is depicted as a phasor on the j−  
axis. Damping force c xICP ICP  with amplitude c xICP 0ω  is a quarter cycle 
ahead of elastic force, on the positive real axis. Inertial force m xICP ICP  
with magnitude m xICP

2
0ω  is a quarter cycle ahead of damping force 

on the j+  axis. The force of the arterial pulse P tsin0 ω  is a phasor 
of magnitude P0  located ϕ  degrees ahead of the displacement.The 
phasors turn together counterclockwise at frequency ω , and the force 
can be taken as the sinusoidal reflection of each phasor on either the real 
(cosine) or imaginary (sine) axis. The ICP pulse is the sum of the inertial, 
damping and elastic forces, and is equal in magnitude and opposite 
in direction to the arterial pulse, by Newton’s third law. The equation 
of motion for the system is  m x c x k x P tsinICP ICP ICP ICP ICP ICP 0 ω+ + = , 
which can be solved by applying Newton’s third law to the 
horizontal and vertical components of the phasors (see text).   
doi:10.5048/BIO-C.2019.3.f3

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f3
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representation on the complex plane is most helpful (fig 3). 
We note that all four forces in the cranium (the arterial pulse 
and the three forces that comprise the ICP pulse) are roughly 
sinusoidal, in accordance with our analogy of the ICP pulse to 
forced harmonic motion. 

The displacement volume of the pulse varies as a sinusoid 
and takes the form

x x tsinICP 0 ω ϕ)(= − 

where x0  is the maximal displacement (volume) of the ICP 
pulse, and ϕ  is the phase of the displacement with respect to 
the force. 

To solve for the displacement of the ICP pulse, we use the 
principle that harmonic motion can be represented as rotating 
vectors. To do so we use Euler’s formula:

e t j tcos sinj t ω ω= +ω 

and we can take either the real part tcosω  or the imaginary part 
j tsinω as representing the waveform of the ICP pulse. 

The four forces in the cranium will then be phasors rotating 
on the complex plane with frequency ω , which is the heart 
rate, and the representation of the force will be the sinusoidal 
reflection of the phasor on an axis. We denote the maximal dis-
placement volume x0 as a phasor pointing along the positive j  
axis at time t .

The elastic force k xICP ICP− is always opposing the displace-
ment from equilibrium and will be a phasor of magnitude 
k xICP 0  pointing down the negative j  axis, opposite the displace-
ment phasor. 

The damping force c xICP ICP is proportional to and directed 
opposite to the velocity (flow), and is the first time derivative 
of the displacement. Differentiation on the complex plane 
multiplies by ω  and rotates the phasor a quarter cycle counter-
clockwise, so the damping force phasor is along the positive real 
axis and has magnitude c xICP 0ω . 

The acceleration in the inertial force m xICP ICP  is the first time 
derivative of the velocity and is rotated a quarter cycle coun-
terclockwise from the damping force phasor. The inertial force 
phasor is along the positive j  axis and has magnitude m xICP

2
0ω . 

The force of the arterial pulse P tsin0 ω  is a phasor of magni-
tude P0  located ϕ  degrees ahead of the displacement.

To solve for displacement magnitude and phase, consider 
that by Newton’s third law the phasor sum of forces in the cra-
nium must at all times be zero, which means that the following 
equations hold:

Vertical: 
k x m x P cos 0ICP ICP0

2
0 0ω ϕ− − =

 

Horizontal: 
c x P sin 0ICP 0 0ω ϕ− =

 

Solving for displacement and phase, displacement magnitude 
is 

x
P

c k mICP ICP ICP

0
0

2 2 2
ω ω )()(

=
+ −

 

The dynamics can be made more clear by the introduction of 
dimensionless variables. The forced frequency ratio

 
n

ω
ω 

is the ratio of heart rate to natural frequency of the ICP pulse 
and the damping ratio 

c
c
ICP

0

is the ratio of intracranial damping to critical damping. Critical 
damping is the largest value of damping at which transient ICP 
oscillations would stop if the arterial pulse stopped and repre-
sents the inflection point between underdamping and 
overdamping in the cranium. The displacement magnitude can 
be expressed as
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This equation for displacement magnitude is of great rel-
evance in the understanding of intracranial pulsatility. Note 
that the displacement becomes very large when the heart rate ω
nears the natural frequency nω , which is characteristic of a sin-
gle degree of freedom system driven near its natural frequency. 
The displacement variable x0 relevant to the windkessel is the 
radial displacement of capillary walls. 

The normal synchrony of arterial pressure and flow wave-
forms [30] implies that for arterial blood flow in the cranium 
the fundamental natural frequency of the vascular tree is equal 
to the heart rate, as will be discussed below. This is necessary 
to optimize the efficiency of cerebral blood flow; asynchronous 
pressure and flow causes reflection of kinetic energy back to the 
left ventricle. However, this synchrony of arterial pressure and 
flow (when nω ω= ) can cause maximal radial displacement of 
capillary walls, with potential to damage the microvasculature. 

The displacement phase is
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Note that at nω ω= , the displacement phase is a quarter 
cycle behind the external force. In the cranium, in which the 
natural frequency of the vasculature is normally equal to the 
heart rate (i.e. the pressure and flow are synchronous) [30], the 
displacement volume waveform lags the pressure waveform and 
the flow waveform by a quarter cycle. 
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Impedance magnitude and phase of the ICP pulse
Because the ICP pulse velocity flow variable xICP  is the first 

time derivative of the ICP volume displacement xICP, and dif-
ferentiation on the complex plane is multiplication by ω and 
rotation counterclockwise by a quarter cycle, the maximal 
velocity of the ICP pulse can be written as
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The radical in the denominator is the impedance 


ZICP  of the 
ICP pulse, which is the instantaneous ratio between the ICP 
pulse pressure and the ICP pulse velocity: 

 

where 


PICP is ICP (force), 


FICP is the flow (velocity) of the ICP 
pulse and 



ZICP is impedance, each expressed in complex. 
The impedance to flow, as a complex number, has a mag-

nitude and a phase, and can be represented as a vector on the 
complex plane (fig 4). 
In polar form, impedance is 





Z
P
F

ZICP
ICP

ICP
ICP θ= = ∠ 

where ZICP  is the magnitude of the impedance of the ICP pulse 
and θ  is the impedance phase of the ICP pulse. Note that the 
impedance phase θ  is different from displacement phase ϕ .
Impedance magnitude is 

Z c XICP ICP ICP
2 2= + 

ICP pulse impedance ZICP  has two components: damping cICP
and reactance X  is 
       

Damping
Damping cICP  of the ICP pulse is the opposition to flow that 

dissipates energy. Damping is the resistive force in the cranium, 
comprised of frictional energy loss due to the flow of blood and 
CSF and of structural damping as the cranial contents oscillate. 
In the vasculature, which generates much of the resistance to 
pulsatile motion, resistance is the dissipation of energy that is 
lost to work of pumping blood. Damping can take three forms: 
resistance associated with inertia, resistance associated with elas-
tance, and resistance associated with the smooth flow of blood. 

Resistance associated with inertia is viscous resistance to the 
motion of blood in vessels. Inertial resistance is similar to the 
kind of resistance that is ordinarily considered in the study 
of resistance to non-pulsatile blood flow. Inertial resistance is 
related, for example, to peripheral vascular resistance. It is the 
resistance encountered by blood moving through vessels, and it 
accounts for a significant portion of the resistance to pulsatile 
blood flow as well. 

Resistance associated with elastance in systems other than 
the cranium is typically due to structural damping. Structural 
damping is energy loss associated with the to-and-fro move-
ments of the elastic cranial contents during the cardiac cycle. It 
differs from viscous damping in that it is not resistance due to 
the flow of blood, but to dissipation of energy in the cranium 
due to motions of elastic intracranial structures. 





Z
P
FICP
ICP

ICP

=

X X X m
k

I E ICP
ICPω
ω

= − = −

Figure 4. ICP pulse impedance on the complex plane. Impedance is 
the ratio of pressure to flow, and can be represented on the complex 
plane. Pressure pulse impedance is the sum of intracranial reactance and 
resistance. Reactance is the sum of inertial reactance mICPω , which is the 
opposition to motion due to the mass of the cerebral systolic stroke 
volume, and elastic reactance kICP

ω
which is the opposition to motion due to systolic compression and 
diastolic refilling of cerebral veins. Inertial reactance (increased by 
tachycardia) is represented on the j+ axis and elastic reactance 
(increased by bradycardia) is represented on the j−  axis. Damping is 
represented on the positive real axis. When inertial reactance and elastic 
reactance are balanced, impedance is purely resistive, and is an extremum 
of either suppression or augmentation, depending on the geometry of 
the oscillator. Normal dynamics in the capillaries corresponds to anti-
resonance, which is an extremum of suppression. This protects capillary 
beds from pulsatility. Impedance has a phase as well as an amplitude. 
Impedance phase gives the timing relationship between pressure and 
flow. A positive impedance angle implies an excess of inertial reactance, 
and the pressure pulse leads the flow pulse. A negative impedance angle 
means an excess of elastic reactance, and the pressure pulse lags the flow 
pulse. An impedance angle of zero corresponds to synchrony (resonance 
or anti-resonance) between pressure and flow pulses.   
doi:10.5048/BIO-C.2019.3.f4
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However, resistance due to elastance in the cranium is not 
entirely, or even primarily, due to structural damping. By the 
Monroe Kellie doctrine, the contents of the cranium are incom-
pressible, and compliance to arterial pulsations can only be 
achieved by displacement of cranial contents. Intracranial elas-
tance is achieved almost entirely by the displacement of venous 
blood, which has been termed “fast-volume-venting” [18]. It is 
likely that much of the resistance associated with elastance in 
the cranium is viscous resistance of vascular flow, akin to the 
resistance associated with smooth flow of blood. 

In the analysis of the damping component of intracranial 
impedance, we will assume that the resistance force varies 
directly with the velocity of flow and is in opposition to it, as it 
does in a simple harmonic oscillator. It is likely, however, that 
the resistance to pulsatile flow in the cranium is non-linear, and 
varies on the square of velocity, which is characteristic of resis-
tance caused by turbulent damping in fluid. [31]

Reactance
Reactance is opposition to flow that stores and releases 

energy. There are two kinds of reactance: inertial reactance, 
which stores and releases kinetic energy, and elastic reactance, 
which stores and releases potential energy. 

Inertial reactance
Inertial reactance XI is the product of mass mICP and fre-

quency ω . Inertial reactance is given by 
 

In simple harmonic motion, the mass is constant and is 
assumed to be concentrated in one place. In the cranium, the 
pulsatile mass is distributed, and it is not constant. The mass of 
the intracranial pulse is equal to the volume of fluid displaced 
by the arterial pulse, or about 5 cc of blood with each heart-
beat (roughly equal to the pulsatile half of the stroke volume 
of cerebral blood flow). The mass is not constant—during the 
cardiac cycle, it varies continuously, like the fluid displaced by 
a piston. As noted above, however, simplification to simple har-
monic motion (with fixed lumped parameters) is justifiable in 
order to describe the dynamics, as long as the amplitude and 
energy of the ICP pulse is not too high. Furthermore, as we 
will see, there are two masses to be considered in the analysis of 
intracranial pulsations—the mass of the vascular pulse, and the 
mass of the extravascular fluid displaced by the vascular pulse. 
Because the latter is just the volume displaced by the former, we 
consider these masses to be equal. This ratio of the mass of the 
intracranial pulse to the mass of the vascular pulse, called the 
mass ratio µ , will be assumed to be one. This will be important 
in the analysis of the cerebral windkessel. 

It should be noted that inertial reactance is the product of 
the mass of the pulse and the heart rate. Inertial reactance is 
the opposition to accelerated flow, and the more frequent the 
pulses, the more frequent the accelerations, and the more oppo-
sition is offered. 

X mI ICPω=

Elastic reactance
Elastic reactance XE  is the ratio of elastance kICP  (the inverse 

of intracranial compliance) and frequency ω  (heart rate). It is 
given by 

X
k

E
ICP

ω
=

 
In simple harmonic motion, elastic force is the product of the 

spring constant (elastance) and the displacement. Displacement 
in the cranium is volume, so the elastance of the intracranial 
pulse is proportional to the volume of the pulse. By the Mon-
roe-Kellie doctrine, the cranial contents are incompressible, so 
most of the elastance of the cranium is from displacement of 
venous blood [18]. With systole and diastole, cerebral veins are 
compressed and refill. CSF exits the foramen magnum in systole 
and returns in diastole, although this displacement is made pos-
sible by the compression and relaxation of spinal veins. Thus, 
nearly all of the cardiac-cycle-related elastance in the cranium is 
due to displacement of venous blood. Intracranial elastance is a 
function of cerebrovenous pressure. 

Elastic reactance 
kICP
ω

is the ratio of the elastance and the heart rate. Elastic reactance 
is the opposition to unaccelerated flow, and the less frequent 
the pulses, the more opposition is offered. 

Total reactance
Total reactance is given by

X m kω
ω

= − 

Total reactance is the difference between inertial and elastic 
reactance. This is because impedance is a complex variable, and 
reactance is represented on the imaginary axis. The total reac-
tance is the difference between the inertial reactance (on the 

j+ axis) and elastic reactance (on the j−  axis). 

Impedance magnitude
Impedance magnitude is related to the resistance and to 

the difference between inertial reactance and elastic reactance, 
expressed in complex:
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Impedance phase
Impedance phase θ (theta) is the timing relationship between 

the pressure pulse and the flow pulse. It is given by the angle 
on the complex plane that the impedance vector (representing a 
complex number) makes with the positive real axis:
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Positive impedance phase means that the ICP pulse leads the 
flow pulse. Negative phase means that the ICP pulse lags the 
flow pulse.

When ICP pulse impedance is dominated by inertial reac-
tance, ICP leads flow. When ICP impedance is dominated by 
elastic reactance, ICP lags flow. Damping tends to mitigate 
phase shifts caused by imbalance of reactances. 

Flow phase
It is important to keep in mind, when measuring phase 

relationships in the cranium, whether the variable measured 
is pressure (force), flow (velocity), or volume (displacement). 
Pressure is measured by ICP monitoring. Flow is measured by 
flow sensitive MRI or by Doppler. Pressure and flow phase are 
given by the impedance phase, and changes in heart rate, iner-
tia, elastance or damping alter the impedance phase and have 
inverse effects on the timing of the pressure and flow pulses: 

 

P FICP ICP θ= ∠
 





F
P

ICP
ICP

θ
=

∠
 

 

F PICP ICP θ= ∠ − 

where 


PICP  is pressure, 


FICP  is flow, θ  is the impedance angle, 
with the relationship between pressure and flow expressed in 
polar form. Positive reactance causes flow to lag pressure, and 
negative reactance causes flow to lead pressure. This effect is 
readily demonstrable in syrinxes, in which flow within the syr-
inx has been found to lead flow in the adjacent subarachnoid 
space by a quarter cycle [1,32]. This is understandable if we 
assume that the CSF flow in the subarachnoid space is synchro-
nous with the arterial pulse, and thus has an impedance phase 
of zero. The syrinx is a ‘capacitor’ with high elastance and very 
little inertance, analogous to a capacitor in an electrical circuit. 
Just as current leads voltage by a quarter cycle in a capacitor, 
flow leads pressure by a quarter cycle in a syrinx. 

Displacement volume phase 
Displacement, as well as pressure and flow, is a variable in 

the cranium. It refers to oscillatory changes in volume and is 
analogous to linear displacement in a mass-spring oscillator and 
to charge in an electrical circuit. 

The phase of volume displacement of the ICP pulse is not 
the same as the impedance phase. The displacement phase ϕ  
(phi) is derived above (for the forced damped oscillator), and 
is given by 

Figure 5. An intuitive understanding of phase in the cranium. Imagine a man pushing a 
heavy mass (top). It’s hard at first, then gets easier. Now imagine a man pushing a heavy spring 
(bottom). It’s easy at first, then gets harder. Inertial force (mass) peaks early, and elastic force 
(spring) peaks late. Velocity is opposite. Velocity in an inertial system peaks late, and velocity 
in an elastic system peaks early. Now imagine the man pushing a mass-spring against a wall 
in forced harmonic motion. He maintains a velocity that can be represented as a sinusoid and 
maintains a steady rhythmic motion. Pushing against the wall is ‘systole’ and pulling away from 
the wall is ‘diastole’. If the mass and spring are balanced, the sinusoidal force he applies to the 
mass-spring is synchronous with the velocity, meaning that systolic force and velocity peak in 
mid-systole, and diastolic force and velocity peak in mid-diastole. 

Suppose the mass is very big, and the spring is very small. The man executes the same motion 
with the same sinusoidal velocity. He will exert a lot of force in early systole and a lot of force 
in early diastole to get the mass moving in different directions. Velocity will be opposite—slow 
early and fast late. When inertia dominates, force is early, and velocity is late. 

Suppose next that the mass is very small, and the spring is very big. The man executes the same 
motion with the same sinusoidal velocity. He will exert a lot of force in late systole and late 
diastole to compress and stretch the big spring. Velocity will be opposite—fast early and slow 
late. When elastance dominates, velocity is early, and force is late.

Now suppose the man changes the frequency of the cycle. Inertia opposes accelerated 
motion, so when change is more frequent, inertial opposition dominates. Elastance opposes 
unaccelerated motion, so when change is less frequent, elastic opposition dominates. 

The total force the man applies to the harmonic motion is the sum of the inertial forces and 
elastic forces. Excessive inertia makes the force peak early and velocity peak late. Excessive 
elastance makes the velocity peak early and force peak late. High frequency accentuates inertia, 
and low frequency accentuates elastance. 

Inertial reactance is the product of inertial and frequency. Elastic reactance is the ratio of 
elastance to frequency. In the cranium, synchrony between pressure and flow is a balance of 
inertial reactance and elastic reactance. Excess inertial reactance makes pressure lead flow, and 
excess elastic reactance makes flow lead pressure. If flow is taken as the reference, excessive 
inertial reactance makes ICP lead and excessive elastic reactance makes ICP lag.   
doi:10.5048/BIO-C.2019.3.f5

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f5
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j

÷÷
ø

ö
çç
è

æ
-

= -
2

1tan
w

w
j

ICPICP

ICP

mk
c

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

×
= -

2

2
01

1

2
tan

n

n

ICP

c
c

w
w
w
w

j

j j

nww =

 

or

Page 30 of 114 
 

space is synchronous with the arterial pulse, and thus has an impedance phase of zero. The syrinx 

is a ‘capacitor’ with high elastance and very little inertance, analogous to a capacitor in an electrical 

circuit. Just as current leads voltage by a quarter cycle in a capacitor, flow leads pressure by a 

quarter cycle in a syrinx.  

 

Displacement volume phase  

Displacement, as well as pressure and flow, is a variable in the cranium. It refers to 

oscillatory changes in volume and is analogous to linear displacement in a mass-spring oscillator 

and to charge in an electrical circuit.  

The phase of volume displacement of the ICP pulse is not the same as the impedance phase. 

The displacement phase  (phi) is derived above (for the forced damped oscillator), and is given 

by  

                                                                                         

or 

                                                                                                

Positive  means that the ICP pulse leads the displacement. Negative  means that displacement 

leads the ICP pulse. Note that at (which represents normal dynamics), the displacement 

phase is a quarter cycle behind the ICP pulse. In the cranium, in which the natural frequency of 

the vasculature is normally equal to the heart rate (i.e. the pressure and flow are synchronous), the 

displacement volume waveform lags the ICP waveform and the flow waveform by a quarter cycle.   

j

÷÷
ø

ö
çç
è

æ
-

= -
2

1tan
w

w
j

ICPICP

ICP

mk
c

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-

×
= -

2

2
01

1

2
tan

n

n

ICP

c
c

w
w
w
w

j

j j

nww =

 

Positive ϕ  means that the ICP pulse leads the displacement. 
Negative ϕ  means that displacement leads the ICP pulse. Note 
that at nω ω= (which represents normal dynamics), the dis-
placement phase is a quarter cycle behind the ICP pulse. In the 
cranium, in which the natural frequency of the vasculature is 
normally equal to the heart rate (i.e. the pressure and flow are 
synchronous), the displacement volume waveform lags the ICP 
waveform and the flow waveform by a quarter cycle. 

Displacement volume can be measured by pulse oximetry 
or by MRI. Pulse oximetry measures absorption of light by 
oxygenated hemoglobin in arteriolar blood volume during the 
cardiac cycle. Fluctuation of absorption of light in arterioles 
during the cardiac cycle is a method of measuring vascular pul-
satility, and the fluctuation with the cardiac cycle is dependent 
on the volume (i.e. displacement) of oxygenated blood in the 
tissue.

An example of an experimental measurement of the phase of 
the displacement variable in the cranium can be inferred from 
the work of Greitz [3]. Greitz measured two different variables 
in normal subjects using flow MRI. He measured velocity of 
blood/CSF flow, and he measured volume change in intracra-
nial spaces, which is a displacement variable. The velocity of 
blood flow in the carotid artery began its upstroke at 0.1 of 
the cardiac cycle (taking the R wave as the beginning of the 
cycle). ICP was not directly measured, but assuming synchrony 
of the ABP and arterial flow pulses (32), the carotid blood 
velocity upstroke at 0.1 of the cycle would imply that the ICP 
pulse happened at -0.07 of the cardiac cycle (using Wagshul 
et al’s [14] finding that the ICP pulse leads the ABP pulse by 
60 degrees in normal dogs, which is about 0.17 of the cardiac 
cycle). The first upstroke of the brain volume displacement in 
Greitz’ patients was at 0.2 of the cardiac cycle, which would put 
the brain expansion (volume displacement variable) at a phase 
lag behind the ICP pulse of 27% of the cardiac cycle, which 
is approximately the quarter cycle lag predicted by windkessel 
theory. 

For an intuitive explanation of phase in the cranium, see fig 
5.

Resonance and anti-resonance
When the inertial reactance equals the elastic reactance, the 

phase is zero, and the impedance is at a minimum (in a single 
degree of freedom system). This is resonance. In systems with 
two or more degrees of freedom, in addition to low impedance 

resonance, there can be (depending on the geometry of the sys-
tem) high impedance resonance, in which at zero phase there 
is a local maximum of impedance. This is sometimes called 
anti-resonance, which is the term I will use for it. As will be 
seen below in the discussion of two degree of freedom systems, 
anti-resonance has great relevance to the cerebral windkessel. 

Heart rate and frequency
In the cranium, the variable ω is the heart rate, measured as 

angular frequency in radians. Because the ABP pulse and the 
ICP pulse are not simple sine waves, Fourier analysis of the 
ABP/ICP pulse gives a range of harmonic frequencies and cor-
responding amplitudes and phases. The fundamental harmonic 
of the ICP pulse and the ABP pulse is the heart rate, and sec-
ond, third etc. harmonics are multiples of the heart rate. 

For our analysis of the ICP pulse as a forced damped har-
monic oscillator, we have simplified the discussion to that of 
a system with a single degree of freedom driven by a single 
frequency of input. In reality, the ICP pulse is a distributed 
parameter system (with infinite degrees of freedom) driven by 
an arterial pulse with a fundamental frequency and harmonics. 
However, as noted above, simplification of the ICP pulse to 
a harmonic oscillator is physically justifiable, given the corre-
spondence of complex periodic motion found in nature with 
the mathematics of simple harmonic motion for relatively 
small amplitudes of displacement. Furthermore, as we will see 
below, we can focus our analysis of pulsatile dynamics on the 
fundamental frequency of the heart rate and the neighboring 
harmonics, which carry much of the energy of the ICP and 
ABP pulse. 

Energy of the ICP pulse
Energy considerations of the ICP pulse are of great impor-

tance in understanding intracranial dynamics, because pulsatile 
motion in the cranium represents oscillation of the cranial 
contents in a potential energy well, in which total energy stays 
constant and there is a continuous exchange of potential and 
kinetic energy between the elastic and inertial forces in the 
cranium. Furthermore, there is dissipation of energy associated 
with damping force. The energy of the ABP pulse or the ICP 
pulse is proportional to the square of the amplitude of the pulse. 

Of course, when we refer to conservation of energy we are 
considering only the energy associated with the motion of 
cranial contents, not the energy associated with metabolic 
processes in the cranium (which is conserved as well, but is 
beyond the scope of this discussion). In addition, when we are 
discussing velocity and flow in the cranium associated with pul-
satility, we are referring to radial motion of the intracapillary and 
extracapillary spaces, not specifically to flow in vessels or CSF 
pathways per se. The net flow of blood and CSF is related to 
the radial motion of vessel walls and CSF spaces, of course, but 
the relationship is more complex than can be addressed in this 
discussion. 

Kinetic energy TICP is associated with ICP pulse inertia, and 
is the work required to impart velocity to the mass of the pulse 
(which varies up to 5 grams or so) over one cycle. In a simple 
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harmonic oscillator, inertial force is equal and opposite (by 
Newton’s third law) to the elastic force. The kinetic energy of 
the pulse is 

T
m v

2ICP
ICP ICP

2

=
 

Where mICP  is the mass of the ICP pulse and vICP is the veloc-
ity of the pulse. 

The potential energy UICP  is the energy stored and released 
by the elastic contents of the cranium with each cardiac cycle, 
and is equal to the work of ‘loading’ and unloading the intra-
cranial elastance (mostly the work of compressing veins). The 
potential energy is

U k x dx
k x
2ICP ICP ICP

x

ICP

ICP ICP
0

2

∫= = 

In the harmonic oscillator without damping, energy is con-
served, so by Newton’s second law:

m
dv
dt

k xICP
ICP

ICP ICP= − 

Multiplying this by      gives

m vdv k x dxICP ICP ICP ICP= −
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The total energy EICP  in reactance in the cranium is con-
stant during normal dynamics, and consists of the exchange of 
kinetic energy TICP  carried by inertia and potential energy UICP  
carried by elastance. 

The storage and release of kinetic and potential energy in the 
cranium are 180 degrees out of phase, with kinetic energy of 
the ICP pulse (associated with radial displacement of walls of 
vessels and ventricles and cisterns) at a maximum in mid systole 
and mid diastole and potential energy at a maximum at the 
transitions between systole and diastole. Again, it is noted that 
the kinetic and potential energy of the ICP pulse are related to 
radial expansion of intracranial spaces, not specifically to the 
bulk longitudinal flow of blood and CSF, with which radial 
oscillation of intracranial vessels and spaces bears a complex 
relationship. 

Resonance, anti-resonance and intracranial dynamics
The arterial pressure pulse and the arterial flow pulse are 

normally synchronous, and synchrony of pressure and flow is 
necessary for optimally efficient cerebral blood flow (see below).

dx
dx
dt

dtICP
ICP=

Synchrony between pressure and flow represents resonance, 
of which there are two types: low impedance resonance and high 
impedance resonance. Low impedance resonance is a condition 
in which there is a maximal amplitude response, and in the 
capillaries this would risk excessive capillary pulsatility, edema 
and loss of capillary integrity. This low impedance resonance is 
characteristic of a single degree of freedom oscillator, although 
it can occur in oscillators of higher degrees of freedom. 

High impedance resonance is a condition of synchrony 
between pressure and flow in which there is suppression of flow, 
which means minimal amplitude response. This is characteris-
tic of systems of two (or more) degrees of freedom. 

As noted above, for clarity, I will refer to low impedance 
resonance as “resonance” and high impedance resonance as 
“anti-resonance,” to emphasize the suppressive nature of the 
anti-resonance characteristic of the cerebral windkessel. The 
need for protection of capillary beds and the need for opti-
mally efficient cerebral blood flow suggests that the cerebral 
windkessel is a system of anti-resonant oscillation tuned to the 
anti-resonant frequency (the heart rate) that simultaneously 
permits resonant flow in large arteries and veins. This presents 
a paradox, and we will examine this paradox in detail in the 
discussions that follow. 

For the discussion that follows, I am indebted to J.P. Den 
Hartog for his lucid exploration of dynamic vibration absorp-
tion and from whose work this mathematical analysis is derived 
[33]. 

THE UNDAMPED WINDKESSEL WITH TWO 
DEGREES OF FREEDOM

Intracapillary and extracapillary spaces
The cranium is a geometrically complex non-linear system 

in which inertia and elastance are distributed continuously 
throughout the contents and which is driven by a quasi-peri-
odic non-harmonic external force. Its dynamics are functions 
of spatial variables as well as time. A rigorous description of 
such dynamics is ponderous and necessarily inexact. Further-
more, rigorous examination of such complex dynamics tends 
to obscure the simpler fundamental properties of the system. 

Because the cranium is a distributed parameter system, and 
the equations of motion we have used are of a lumped parame-
ter system, it is helpful to specify the portions of the vasculature 
represented by the mathematical simplifications necessary to 
this analysis. Since this is a model of the cerebral windkessel, we 
will infer that the cerebral microvasculature, especially the capil-
laries, are the space in which the pulsation absorption system 
is most effective. The windkessel also involves the intracranial 
arteries and veins, in very important ways, but the windkessel is 
most evident in flow in the microvasculature. While the arter-
ies also have a windkessel mechanism, the arteries and veins 
in the cranium are an essential part of the absorber, and will 
be included in a different space (the absorber space) than the 
capillaries
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We thus far have examined the properties of the ICP pulse as 
a simple harmonic oscillator and a forced harmonic oscillator 
with damping. Both systems have one degree of freedom. 

With windkessel dynamics, we begin the discussion of intra-
cranial dynamics as a system with two degrees of freedom. In 
the next level of accuracy and complexity, we will consider the 
ICP pulse as a manifestation of the dynamics of an undamped 
windkessel. As noted above, conceptually this entails two dif-
ferent pathways through which pulsations may travel: the 
intracapillary space and the extracapillary space.

Radical simplification of pulsatile intracranial dynamics has 
the advantage of (relative) clarity, and, as noted above, it is justi-
fied as long as the displacement and the energy of the pulsatility 
is relatively small, which is certainly the case with the ICP 
pulse. As will be seen, even quantitative estimates of intracra-
nial pulsatility can be made that have modest agreement with 
experiment, as long as proper caution is taken in interpretation. 

The windkessel is a two-degree-of-freedom oscillator
We divide the cranium conceptually into an intracapillary 

space and an extracapillary space, understanding the intra-
capillary space to mean the lumina of the capillaries and the 
extracapillary space to mean the remainder of the cranial con-
tents, to include the brain parenchyma, the ISF and CSF, and 
the large intracranial arteries and veins. 

The equations of motion for the intracapillary and extracap-
illary spaces are:

For the intracapillary space

M x K k x k x P tsinIC IC IC EC IC EC EC 0 ω)(+ + − = 

where MIC  is the mass of the intracapillary (intravascular) pulse, 
xIC is the displacement volume of the intracapillary space, KIC
is the elastance of the intracapillary space, kEC is the elastance of 
the extracapillary space, and xEC is the displacement volume of 
the extracapillary space.

The equation of motion for the extracapillary space is 

m x k x x( ) 0EC EC EC EC IC+ − = 

where mEC  is the mass of the ICP pulse in the extracapillary 
space. 

Because the forced pulsations lack the first derivatives xIC
and xEC , and a sine function twice differentiated remains a sine 
function, the forced pulsations will take the form:

x a tsinIC IC ω=

 x a tsinEC EC ω= 

Division by tsinω transforms the equations of motion from 
differential equations to algebraic equations.

For the intracapillary space

a M K k a k PIC IC IC EC EC EC
2

0ω )(− + + − = 

And for the extracapillary space

k a a m k 0EC IC EC EC EC
2ω )(− + − + = 

To simplify by dimensionless quantities, we define:

x
P
KSTIC
IC

0=

= static radial displacement of capillary wall (i.e. the radial dis-
placement of the capillary wall if it were subjected to constant 
pressure P0 ) 

k
mEC
EC

EC

2ω = =

the square of natural frequency of extracapillary space

 

K
MIC

IC

IC

2Ω = =

the square of natural frequency of intracapillary space 
m
M
EC

IC

µ= =

the mass ratio of extracapillary pulse to intracapillary pulse 
ω =  the angular heart rate in radians 

The equation of motion for the intracapillary space becomes
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Solving for and : 

Capillary wall displacement =                             

 

Extracapillary space displacement =                
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and for the extracapillary space
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Solving for aIC and aEC :
Capillary wall displacement =
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Extracapillary space displacement =
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The displacement of the capillary wall
 a

x
IC

STIC

at anti-resonance (when ECω ω= ) is zero. In the undamped 
windkessel model, this is when the heart rate equals the natu-
ral frequency of the extracapillary space. At anti-resonance, the 
extracapillary space ‘absorbs’ the intracapillary pulsations, and 
renders the capillary blood flow pulseless. Note that pulsation 
absorption is dependent on heart rate, elastance, inertia and 
damping.

To gain deeper physical insight into the windkessel, consider 
the amplitude of extracapillary pulsations. Because 

x
P
KSTIC
IC

0=

extracapillary displacement at anti-resonance is given by 
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a
K
k

x
K
k

P
K

P
kEC

IC

EC
STIC

IC

EC IC EC

0 0= − = − ⋅ = −
 

When at anti-resonance (i.e. when the windkessel is effec-
tive), the extracapillary space is undergoing the motion 

a
P
k

tsinEC
EC

0 ω= −
 

The pressure (i.e. elastic force) PEC  that the extracapillary 
space exerts externally on the capillary walls varies as 

P P tsinEC 0 ω= −
 

with the negative sign in P0−  indicating that the pressure is 
external to the capillary walls. 

Simultaneously, the pressure PIC that the arterial pulse exerts 
internal to the capillary walls is 

P P tsinIC 0 ω=
 

The instantaneous net pressure across the capillary walls at 
any moment during the cardiac cycle is

P P P t P tsin sin 0IC EC 0 0ω ω+ = − =
 

Thus, at anti-resonance, the pressure in the extracapillary space 
is continuously equal to and opposed to the pressure in the intracap-
illary space, and the transmural pressure across the capillary wall 
is zero. The capillaries are protected from arterial pulsatility (fig 
6). 

This is the essence of the windkessel: it entails a continuous 
reciprocating balance of intracapillary and extracapillary pres-
sures so as to render capillary walls motionless, and to render 
capillary flow pulseless (in the radial direction) (fig 7). 

Note especially that the windkessel dynamics depends criti-
cally on anti-resonance. The natural frequency of oscillation of 
the intracapillary and extracapillary spaces must be equal to the 
heart rate for capillary wall motion to be suppressed. This is 
characteristic of the undamped model of the windkessel. As we 
will see below, damping alters the condition of anti-resonance 
somewhat, although the basic principles of the windkessel and 
pulsation absorption remain the same. 

To clarify the windkessel conditions at anti-resonance, con-
sider the dynamics for anti-resonance, in which EC ICω = Ω  (the 
natural frequency of the extra-and intracapillary spaces are 
equal) and

= 

(the corresponding mass and elastance ratios correspond to 
anti-resonance) and

k
K

m
M

EC

IC

EC

IC

=

and µ, defined as the mass ratio of the extra- to intracapillary 
space, is given by

k
m

K
M

EC

EC

IC

IC

=
EC IC
2 2ω = Ω

Figure 6. The cerebral windkessel is a dynamic pulsation absorber. 
When a system is driven by an external force at resonance with the 
system’s natural frequency of oscillation, it will respond with a large 
amplitude of displacement that is often damaging. Cerebral blood flow 
has synchronous pressure and flow, which represents resonant perfusion. 
This endangers capillaries because of the large displacement of vascular 
walls inherent to resonant dynamics. Large amplitude resonant responses 
can be prevented by the use of dynamic vibration absorption, which is 
a method widely used in engineering to protect against damage caused 
by resonant vibrations. Upper: depicts blood flow in the intracapillary 
space driven at its resonant frequency (the heart rate). The extracapillary 
space, which is most of the cranial contents, is analogous to an absorber 
mass on a spring, in that it oscillates naturally in opposition to the heart 
beat that is driving the intracapillary space. When the heart beat pushes 
down, the extracapillary mass is pushing up. When the heart beat pulls 
up, the extracapillary mass is pulling down. The arterial and elastic forces 
on the intracapillary mass are always equal and opposite, and the pulse 
is removed from the intracapillary mass. Lower: extends the analogy to a 
somewhat more realistic geometry, in which the intracapillary space is a 
sphere encased in a spherical extracapillary space. The natural frequency 
of both spaces are equal to each other and to the heart rate. The “spring” 
force is provided by compression and relaxation of cerebral veins by 
the reciprocal transposition of the pulse through the CSF between the 
arteries and the veins. During systole, expansion of the intracapillary 
space is prevented by the elastic force of the extracapillary pressure 
pushing inward. During diastole, relaxation of the intracapillary space 
is prevented by the elastic force of the extracapillary pressure pulling 
outward. This prevents radial motion in the intracapillary space and 
protects capillary walls from the arterial pulse. The dynamic between 
the intra-and extra-capillary space is anti-resonant and depends on the 
balance of pressures inside and outside the capillaries. Proper function of 
the cerebral windkessel also depends on proper direction of forces, which 
is accomplished by hydraulic linkage provided by the CSF, which solves 
the geometrical problem inherent to pulsation absorption in a resonator 
(the cranium) with complex anatomy. doi:10.5048/BIO-C.2019.3.f6

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f6
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m
M
EC

IC

µ= 

It is noteworthy that the inertia in the cranium is not fixed, 
but varies with time during the cardiac cycle, because the intra-
capillary pulse is a piston that displaces a similar amount of 
extracapillary fluid. Although this complicates the analysis 
somewhat, it greatly simplifies it as well, because the mass of 
the intracapillary pulse and the extracapillary pulse are always 
the same: the latter is just the fluid displaced by the former. µ
in the cranium is always equal to 1. This is tantamount to an 
assertion of the Monroe Kellie doctrine. 

At anti-resonance, the equations of displacement are for the 
intracapillary space:
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and for the extracapillary space: 
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Note that the denominators of the displacement of the intra-
capillary and extracapillary spaces are equal. When multiplied 
out, the denominator yields a quadratic equation in 

EC

2

2

ω
ω

              

which has two roots. This means that for two values of fre-
quency the denominator of the extracapillary displacement and 
intracapillary displacement become zero, and thus the ampli-
tude of the pulsations becomes unbounded. These unbounded 
responses are the two resonant (rather than anti-resonant) fre-
quencies of the combined intra- and extracapillary spaces. 

What the pulsation absorber mechanism does to the pulsatile 
dynamics is that it shifts the high amplitude single resonant 
response of the single-degree-of-freedom intracapillary space 
to a double resonant response split around the central (heart 
rate) frequency, with two resonant responses which are off (one 
above and one below) the heart rate frequency (fig 8). At the 
heart rate frequency, sometimes called the ‘notch’, the radial 
motion of the capillary walls is suppressed. 

It is noteworthy that high-amplitude resonant responses don’t 
disappear with the windkessel. Rather, the normal resonance at 
the heart rate frequency is split and shifted to frequencies above 
and below the heart rate. Teleologically, this is advantageous for 
intracranial dynamics, because while two new resonances are 
created by the windkessel, they are at frequencies away from the 
heart rate which transfer a much smaller portion of the energy 
of arterial pulsatility than is transferred at the fundamental of 
the heart rate. The windkessel shifts the resonance responses to 
frequencies that pose less risk to the microcirculation because 
they carry less energy than the heart rate frequency. 

Figure 7. The windkessel is a continuous reciprocating balance of capillary transmural pressures. Left: a schematic representation of the 
transmural forces generated by the cerebral windkessel during one cardiac cycle. The central baseline is the capillary radius, which represents capillary 
wall stress. The solid sinusoid represents the internal arterial pressure on the capillary wall. The dotted sinusoid represents the external pressure exerted 
by the extracapillary fluids and tissues on the capillary wall. When the windkessel is working properly (i.e. at anti-resonance), the internal intracapillary 
and external extracapillary pulse pressures are continuously balanced and the transmural capillary pressure is zero. This protects capillaries from 
arterial pulsatility. Right: a schematic representation of the transmural forces generated by an impaired cerebral windkessel during one cardiac cycle. 
The intracranial elastic force is increased due to cerebral edema or an intracranial mass lesion. The arterial pressure (solid sinusoid) is no longer 
balanced by the extracapillary pressure (dotted sinusoid), which is high due to the increased intracranial elastance. This imbalance causes abnormally 
high motion stress in capillary walls, predisposing to cerebral edema and catastrophic loss of capillary integrity. This normal and abnormal windkessel 
motion has been observed using flow MRI [3], and the frequency domain signature of these dynamics has been observed in normal animals and in 
intracranial hypertension [14,24], and in experimental [27] and human [26,28] hydrocephalus. doi:10.5048/BIO-C.2019.3.f7

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f7
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The frequencies of the split resonances can be determined by 
setting the denominator to zero:

Page 43 of 114 
 

What the pulsation absorber mechanism does to the pulsatile dynamics is that it shifts the 

high amplitude single resonant response of the single-degree-of-freedom intracapillary space to a 

double resonant response split around the central (heart rate) frequency, with two resonant 

responses which are off (one above and one below) the heart rate frequency (fig 8). At the heart 

rate frequency, sometimes called the ‘notch’, the radial motion of the capillary walls is suppressed.  

It is noteworthy that high-amplitude resonant responses don’t disappear with the 

windkessel. Rather, the normal resonance at the heart rate frequency is split and shifted to 

frequencies above and below the heart rate. Teleologically, this is advantageous for intracranial 

dynamics, because while two new resonances are created by the windkessel, they are at frequencies 

away from the heart rate which transfer a much smaller portion of the energy of arterial pulsatility 

than is transferred at the fundamental of the heart rate. The windkessel shifts the resonance 

responses to frequencies that pose less risk to the microcirculation because they carry less energy 

than the heart rate frequency.  

The frequencies of the split resonances can be determined by setting the denominator to zero: 

 

                                                                              

                                                                                 

The solutions in terms of the ratios of the resonant frequencies to the natural frequency of the 

extracapillary space in the undamped windkessel model are 

011 2

2

2

2

=-÷
÷
ø

ö
ç
ç
è

æ
-+÷

÷
ø

ö
ç
ç
è

æ
- µ

w
wµ

w
w

ECEC

( ) 012
24

=++÷÷
ø

ö
çç
è

æ
-÷÷

ø

ö
çç
è

æ
µ

w
w

w
w

ECEC

 

Page 43 of 114 
 

What the pulsation absorber mechanism does to the pulsatile dynamics is that it shifts the 

high amplitude single resonant response of the single-degree-of-freedom intracapillary space to a 

double resonant response split around the central (heart rate) frequency, with two resonant 

responses which are off (one above and one below) the heart rate frequency (fig 8). At the heart 

rate frequency, sometimes called the ‘notch’, the radial motion of the capillary walls is suppressed.  

It is noteworthy that high-amplitude resonant responses don’t disappear with the 

windkessel. Rather, the normal resonance at the heart rate frequency is split and shifted to 

frequencies above and below the heart rate. Teleologically, this is advantageous for intracranial 

dynamics, because while two new resonances are created by the windkessel, they are at frequencies 

away from the heart rate which transfer a much smaller portion of the energy of arterial pulsatility 

than is transferred at the fundamental of the heart rate. The windkessel shifts the resonance 

responses to frequencies that pose less risk to the microcirculation because they carry less energy 

than the heart rate frequency.  

The frequencies of the split resonances can be determined by setting the denominator to zero: 

 

                                                                              

                                                                                 

The solutions in terms of the ratios of the resonant frequencies to the natural frequency of the 

extracapillary space in the undamped windkessel model are 

011 2

2

2

2

=-÷
÷
ø

ö
ç
ç
è

æ
-+÷

÷
ø

ö
ç
ç
è

æ
- µ

w
wµ

w
w

ECEC

( ) 012
24

=++÷÷
ø

ö
çç
è

æ
-÷÷

ø

ö
çç
è

æ
µ

w
w

w
w

ECEC

 

The solutions in terms of the ratios of the resonant frequen-
cies to the natural frequency of the extracapillary space in the 
undamped windkessel model are

Page 44 of 114 
 

                                    

                                                 

Calculation of resonant peaks in Wagshul et al example 

The two resonant peaks predicted by windkessel theory have been observed and studied 

empirically [14]. Wagshul et al studied the frequency response of the ICP to the ABP in dogs, and 

they observed a region of pulsation suppression around the heart rate encompassing the first two 

harmonics, as well as high frequency resonant peak from 6-15Hz (fig 9). There is a peak in the 

lower frequencies as well, although potential artifacts in the low frequency range of the transfer 

function make discernment more difficult. Both high frequency and low frequency peaks are 

associated with phase transitions (the lower peak from lagging to leading phase, and the higher 

peak from leading to lagging), which is characteristic of two degree of freedom pulsation absorbers 

[34] and supports the view that the peaks are resonant responses and not just artifacts.  

Based on windkessel theory, the location of the resonant peaks in the cranium can be 

estimated. This estimation is based on an undamped windkessel model, in which the natural 

frequency of oscillation of the extracapillary space (the absorber) is equal to the natural frequency 

of the intracapillary space. As we will see, this is not true for the damped windkessel model, but it 

is a reasonable approximation in the simplified dynamics of the undamped windkessel.  

At anti-resonance, note that  (for the undamped windkessel) so for this analysis  
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Calculation of resonant peaks in Wagshul et al example
The two resonant peaks predicted by windkessel theory have 

been observed and studied empirically [14]. Wagshul et al 
studied the frequency response of the ICP to the ABP in dogs, 
and they observed a region of pulsation suppression around the 
heart rate encompassing the first two harmonics, as well as high 
frequency resonant peak from 6-15Hz (fig 9). There is a peak 
in the lower frequencies as well, although potential artifacts in 
the low frequency range of the transfer function make discern-
ment more difficult. Both high frequency and low frequency 
peaks are associated with phase transitions (the lower peak from 
lagging to leading phase, and the higher peak from leading to 
lagging), which is characteristic of two degree of freedom pulsa-
tion absorbers [34] and supports the view that the peaks are 
resonant responses and not just artifacts. 

Based on windkessel theory, the location of the resonant 
peaks in the cranium can be estimated. This estimation is based 
on an undamped windkessel model, in which the natural fre-
quency of oscillation of the extracapillary space (the absorber) 
is equal to the natural frequency of the intracapillary space. As 
we will see, this is not true for the damped windkessel model, 
but it is a reasonable approximation in the simplified dynamics 
of the undamped windkessel. 

At anti-resonance, note that EC ICω = Ω  (for the undamped 
windkessel) so for this analysis 
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The mass ratio , which represents the ratio of the mass of the extracapillary pulse to the 

intracapillary pulse, is 1, because the former is just the fluid displaced by the latter.  

Given that blood flow is resonant and  (the heart rate is equal to the resonant frequency 

of the intracapillary space), it follows that                         

                                                                                    

                                                                            

                                                                                

We assume that the windkessel notch spans the fundamental and 2nd harmonic, so 

For the 2 Hz harmonic of the notch, 
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The mass ratio µ, which represents the ratio of the mass of 
the extracapillary pulse to the intracapillary pulse, is 1, because 
the former is just the fluid displaced by the latter. 

Given that blood flow is resonant and ICω = Ω  (the heart rate 
is equal to the resonant frequency of the intracapillary space), 
it follows that 

1.5 1.25Peakω ω )(= ±
 

 2.62 1.62Peak HIGHω ω ω= =

Figure 8: Resonant and anti-resonant responses. Left: A single-degree-of-freedom oscillator shows a resonant response. Schematic graph of the 
frequency response of a single degree of freedom oscillator. At the resonant frequency, which is a balance of inertial and elastic reactance, there is a 
high amplitude response. A system driven at this resonant frequency will have maximal efficiency of power, but the high amplitude of oscillations may 
cause damage. This would occur in the cerebral capillaries, without the windkessel. Right: A two-degree-of-freedom oscillator (notch filter) shows 
an anti-resonant response. At the anti-resonant frequency, there is a low amplitude response, sometimes called a ‘notch’. A system driven at this anti-
resonant frequency will be protected from damage caused by high amplitude oscillations. The two peaks at higher and lower frequencies represent 
resonant frequency responses characteristic of this kind of system. This is a dynamic vibration absorber, which is a mechanical analogue of the cerebral 
windkessel. doi:10.5048/BIO-C.2019.3.f8

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f8
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.38 0.62Peak LOWω ω ω= =
 

We assume that the windkessel notch spans the fundamental 
and 2nd harmonic, so
For the 2 Hz harmonic of the notch,

Upper peak  

Lower peak  

For the 4 Hz Harmonic of the notch,

Upper peak  

Lower peak  

The middle peaks (2.48 Hz and 3.24 Hz) fall within the 
notch and are suppressed. 

The upper peak of the second harmonic and the lower peak 
of the fundamental are the high and low peaks defining the 
notch, and are at

Notch (2-4 Hz) upper peak 6.48 
Notch (2-4 Hz) lower peak 1.24 
The observed and predicted peaks are shown in fig 9. The 

frequencies of the observed peaks correlate reasonably well with 
the frequencies predicted by windkessel theory. 

3.24Peak Hz2ω =

1.24Peak Hz2ω =

6.48Peak Hz4ω =

2.48Peak Hz4ω =

Note that this estimate is derived from the undamped model 
of the windkessel. Damping in the windkessel widens the notch 
(see below). In fig 9, the predicted peaks fall slightly closer to 
the central frequency than the observed peaks, consistent with 
fact that the equation derived from the undamped windkessel 
slightly underestimates the width of the notch. 

Quality factor and bandwidth
The quality factor and the bandwidth of the windkessel 

describe the width of the notch. Damping will diminish the 
amplitude of the peaks, increase the amplitude of the response 
at the anti-resonant frequency, and widen the effective notch, 
as we will see below. The width of the notch is measured by the 
bandwidth, which is defined as the full width of the notch at 
half-maximum power. The bandwidth is related to the inverse 
of the quality factor Q , which is a measure of the sharpness of 
the notch. The quality factor at resonance is the ratio between 
energy stored and energy dissipated per cardiac cycle

 

and is given by
Q X

c
= 

Q
E
E

Stored

Dissipated

=

Figure 9: ABP to ICP amplitude (Left) and phase (Right) transfer functions (reprinted from Wagshul et al [14] with minor modifications, with 
permission). Wagshul et al [14] measured the ABP to ICP amplitude transfer function in dogs. Consistently there was a notch in the transfer function 
spanning the region of the heart rate and the second harmonic (arrows), with two high amplitude peaks at higher and lower frequencies forming the 
walls of the notch. This transfer function is characteristic of the cerebral windkessel, which is a two degree of freedom dynamic pulsation absorber 
driven near its natural frequency. Theory predicts peaks at 1.24 Hz and 3.24 Hz associated with the heart rate harmonic (dotted lines), and peaks at 
2.48 Hz and 6.48 Hz associated with the second harmonic (solid lines). The 1.24 Hz peak and the 6.48 Hz peak correspond reasonably well with the 
observed peaks, and the 2.48 Hz and 3.24 Hz peaks appear to be attenuated in the notch, although there is a small peak in that region. The predicted 
peaks at 1.24 Hz and 6.48 Hz fall slightly medial to the observed peaks, which can be explained as the consequence of damping in the actual cerebral 
windkessel, which is not accounted for in the mathematical prediction of the peaks and which would widen the notch.

The phase transfer function in dogs shows phase transition (dotted lines) from lagging to leading ICP phase at the frequency of the lower peak with 
a phase transition from leading to lagging at the higher peak. The phase transitions correlate reasonably well with the location of the lower (1.28 Hz) 
and upper (6.48 Hz) resonance peaks predicted by windkessel theory. The phase transition at the location of each peaks supports the view that these 
peaks are resonant responses. In the notch the phase is slightly positive, which correlates with an ICP pulse that leads the ABP pulse in the time domain 
(Fig 1). doi:10.5048/BIO-C.2019.3.f9

https://www.dx.doi.org/doi:10.5048/BIO-C.2019.3.f9
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where X  is the inertial reactance or the elastic reactance (which 
are equal at resonance), and c is the damping. 

The relationship between Q and the width of the notch ω∆
(i.e. the bandwidth) in normal dynamics is: 

 
Q

anti resonantω
ω

∆  = − 

Where ω∆  is the width of the notch, Q  is the quality fac-
tor, and anti resonantω −  is the central frequency of the notch. Q  is 
the ratio of energy stored to energy dissipated by intracranial 
pulsations per cardiac cycle, and describes the ‘sensitivity’ or 
narrowness of the notch. In a damped absorber, which is a more 
accurate approximation of the cerebral windkessel, the wind-
kessel notch is wider than is predicted by the mathematics of 
the undamped model.

THE DAMPED WINDKESSEL WITH TWO 
DEGREES OF FREEDOM

The windkessel is a two-degree-of-freedom oscillator 
with damping

With undamped windkessel dynamics, we began the dis-
cussion of intracranial dynamics as a system with two degrees 
of freedom. The idealized undamped absorber model is use-
ful because it clarifies the essential dynamics of the cerebral 
windkessel—the anti-resonant suppression of the heart rate 
frequency in the cranium. 

The cerebral windkessel is a damped system, however, and 
damping alters the dynamics in complex but important ways. 
In the next level of accuracy and complexity, we will consider 
the ICP pulse as a manifestation of the dynamics of a damped 
windkessel. We assume a linear system with viscous damping c  
in the extracapillary space. 

For the intracapillary space, the equation of motion with 
damping cEC  in the extracapillary space is 

  M x K x k x x c x x P t( ) sinIC IC IC IC EC IC EC EC IC EC 0 ω)(+ + − + − =
 

For the extracapillary space

  m x k x x c x x( ) 0EC EC EC EC IC EC EC IC )(+ − + − =
 

We are concerned with the forced steady state oscillations. 
The displacements of the spaces are harmonic motions that can 
be represented by phasors on the complex plane rotating with 
heart rate frequency ω , taking the rotating projection on the 
real axis ( tcosω ) as the displacement of the wall of the space. 
The equations for the two degree of freedom damped wind-
kessel can be solved by representing the phasors as complex 
numbers. 

For the intracapillary space:

M x K x k x x j c x x P( )IC IC IC IC EC IC EC EC IC EC
2

0ω ω )(− + + − + − =
 

For the extracapillary space:

m x k x x j c x x( ) 0EC EC EC EC IC EC EC IC
2ω ω )(− + − + − =

 

where xIC  and xEC are complex numbers representing displace-
ment of the walls of the intracapillary and extracapillary spaces.

Simplifying:
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where  and are complex numbers representing displacement of the walls of the 

intracapillary and extracapillary spaces. 
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We solve for the displacement of the intracapillary space by 
substitution of xEC in terms of xIC :
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Simplifying: 

We solve for the displacement of the intracapillary space by substitution of in terms of : 

This equation is a phasor representation on the complex plane of the displacement of the wall of 

the intracapillary space. The intracapillary displacement has two components—one real 

component in phase with the arterial pulse pressure and one imaginary component leading it by 90 

degrees. We carry out the complex division by multiplying by the complex conjugate of the 

denominator and then rearranging terms.  

For the motion of the capillary wall:

To simplify and clarify the dynamics, we write it in dimensionless form using the following 

identities: 

= mass ratio of extracapillary pulse to intracapillary pulse = 1

= square of natural frequency of extracapillary space
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This equation is a phasor representation on the complex 
plane of the displacement of the wall of the intracapillary space. 
The intracapillary displacement has two components—one real 
component in phase with the arterial pulse pressure and one 
imaginary component leading it by 90 degrees. We carry out 
the complex division by multiplying by the complex conjugate 
of the denominator and then rearranging terms. 

For the motion of the capillary wall:
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To simplify and clarify the dynamics, we write it in dimen-
sionless form using the following identities:

m
M
EC

IC

µ=

= mass ratio of extracapillary pulse to intracapillary pulse = 1 

k
mEC
EC

EC

2ω =

= square of natural frequency of extracapillary space 
K
MIC

IC

IC

2Ω =

= square of natural frequency of intracapillary space 

f EC

IC

ω
=

Ω

= natural frequency ratio of extracapillary to intracapillary space 

g
IC

ω=
Ω

= forced frequency ratio 

x
P
KSTIC
IC

0=

= static displacement of capillary walls 
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cEC  = damping in the extracapillary space 
c m2c EC  IC= Ω

= critical damping, which is damping at which the wall returns 
to its static position most quickly

The amplitude ratio of the radial displacement of the capil-
lary wall in dimensionless variables is
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= square of natural frequency of intracapillary space

= natural frequency ratio of extracapillary to intracapillary space               

= forced frequency ratio

= static displacement of capillary walls

 = damping in the extracapillary space

= critical damping, which is damping at which the wall returns to its static position 

most quickly 

The amplitude ratio of the radial displacement of the capillary wall in dimensionless variables is 

To gain deeper insight into damping, consider that at zero damping there are two 

unbounded resonant peaks straddling the central frequency, as we have already shown with the 

undamped windkessel. At infinite damping, the intra-and extracapillary spaces are essentially 

stuck together and oscillate as a single degree of freedom system, with high amplitude response at 

the central frequency. So there must be a value for damping between zero and infinity at which 

damping is optimal, in that the windkessel suppresses the heartbeat most efficiently.  
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To gain deeper insight into damping, consider that at zero 
damping there are two unbounded resonant peaks straddling 
the central frequency, as we have already shown with the 
undamped windkessel. At infinite damping, the intra-and extra-
capillary spaces are essentially stuck together and oscillate as a 
single degree of freedom system, with high amplitude response 
at the central frequency. So there must be a value for damping 
between zero and infinity at which damping is optimal, in that 
the windkessel suppresses the heartbeat most efficiently. 

To determine this value for damping, we consider that for all 
values of damping the amplitude response curve passes through 
the same two points, one above and one below the central 
(anti-resonant) heart beat frequency [35]. The most favorable 
damping is that at which these two resonant peaks are sym-
metrical and at which a tangent has a slope of zero. 

This greatly simplifies the search for the equation for the 
optimally damped windkessel, because we need only find an 
expression in which the intracapillary displacement is inde-
pendent of damping, and that will be the optimally damped 
windkessel. So what are the values of the natural frequency ratio

f EC

IC

ω
=

Ω

and the forced frequency ratio

g
IC

ω=
Ω

for which the displacement of the capillary wall is independent 
of damping? 

Consider:

Page 51 of 114 

To determine this value for damping, we consider that for all values of damping the 

amplitude response curve passes through the same two points, one above and one below the central 

(anti-resonant) heart beat frequency [35]. The most favorable damping is that at which these two 

resonant peaks are symmetrical and at which a tangent has a slope of zero.  

This greatly simplifies the search for the equation for the optimally damped windkessel, 

because we need only find an expression in which the intracapillary displacement is independent 

of damping, and that will be the optimally damped windkessel. So what are the values of the natural 

frequency ratio  and the forced frequency ratio for which the displacement of 

the capillary wall is independent of damping? 

Consider: 

The amplitude of capillary wall motion does not depend on damping if , because the 

numerator can them be factored out to eliminate the damping ratio and capillary wall motion only 

depends on the four remaining terms. Written out in the four terms of the dimensionless windkessel 

equation, the capillary wall motion is independent of damping if: 

We can take the square root of both sides (but we must add a  sign to the right side). Taking the 

minus sign,  

IC

ECf
W

=
w

IC

g
W

=
w

D
c
c

C

B
c
c

A

x
x

c

EC

c

EC

STIC

IC

+÷÷
ø

ö
çç
è

æ

+÷÷
ø

ö
çç
è

æ

=÷÷
ø

ö
çç
è

æ
2

2

2

D
B

C
A
=

( )( )
2

22222

222

22 11
1

÷÷
ø

ö
çç
è

æ
---

-
=÷÷

ø

ö
çç
è

æ
+- fgggf

fg
gg µµ

±

 

The amplitude of capillary wall motion does not depend on 
damping if 

A
C

B
D

=

because the numerator can them be factored out to eliminate 
the damping ratio and capillary wall motion only depends on 
the four remaining terms. Written out in the four terms of the 

dimensionless windkessel equation, the capillary wall motion is 
independent of damping if:
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We can take the square root of both sides (but we must add a 
±  sign to the right side). Taking the minus sign, 

f g g g f g f g g1 12 2 2 2 2 2 2 2 2µ µ) ) ) )( ( ( (− − − = − − − +
 

which reduces to
f g g g f2 2 2 2 2µ µ )(= − − 

or
f g f2 2 2= − + 

So that
g 02 = 

This is trivially true, because if g or ω  are zero, the capillary 
wall doesn’t move and the damping is irrelevant. 

If we take the plus sign in the simplification, we get

g g f f f2 1
2

2
2

04 2
2 2 2µ

µ µ
− + +

+
+

+
=

 

which is quadratic in g 2 , which has two solutions (the roots 
are g1

2 and g2
2 ) and will provide the frequency and amplitude 

of the two peaks at which the damped windkessel is optimal. 
It is not necessary to solve for g 2  because we can simplify the 

equation by noting that all damping curves pass through the 
two resonance peaks and setting damping equal to infinity. The 
equation reduces to 

x
x g

1
1 1

IC

STIC
2 µ)(=

− +
 

Substituting g1
2 and g2

2 :

g g
1

1 1
1

1 11
2

2
2µ µ) )( (− +

=
− +

 

Correcting for phase reversal and normalizing amplitude, 
this simplifies to 

g g 2
11

2
2
2

µ
+ =

+
 

Noting that the negative coefficient of the middle term in a 
quadratic equation is the sum of the roots, we obtain
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Substituting:

f 1
1 µ
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Remember that for the cranium the mass ratio µ of the 
intracapillary pulse and the extracapillary pulse is 1. Therefore 
for the cerebral windkessel, the frequency ratio f  (the ratio 
between the natural frequency of the extracapillary space ECω
and the natural frequency of the intracapillary space ICΩ ) is

f 1
1

1
2

EC

IC

ω
µ

=
Ω

=
+

=
 

This means that for a damped windkessel, optimal pulsation 
absorption occurs when the natural frequency of the extracapillary 
space is half the heart rate (the heart rate is equal to the natu-
ral frequency of the intracapillary space). Notice that since the 
natural frequency of the extracapillary space is given by 

k
mEC
EC

EC

ω =
 

and the natural frequency of the extracapillary space is half that 
of the intracapillary space and half the heart rate, the lower 
natural frequency of the extracapillary space implies a domi-
nance of inertia over elastance in the extracapillary space, as 
compared to the balance of inertia and elastance in the intra-
capillary space. 

So the most effective damped windkessel absorber (which cor-
responds most closely to the cranium) is an intracapillary space 
with equal inertial and elastic reactance, and an extracapillary 
space with a high ratio of inertial reactance to elastic reactance. 
This facilitates optimally efficient blood flow and suppression 
of capillary pulsation.

By the impedance phase equation for the extracapillary space
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the impedance phase of the extracapillary space for the most 
effective damped windkessel (i.e. a windkessel in which mECω
is greater than 

kEC
ω

) is positive. That is, the windkessel is most effective when the ICP 
pulse leads the ABP pulse. It is noteworthy that this result corre-
lates well with the consistent finding that the ICP (extracapillary) 
pulse leads the ABP (intracapillary/intravascular) pulse in nor-
mal dynamics [14] and (fig 1). 

Transfer function analysis of the cerebral windkessel 
The cerebral windkessel is a notch filter, which is a type of 

frequency sensitive filter that transforms an input (the ABP 
pulse) into an output (the ICP pulse). This transformation 
can be analyzed using the transfer function, which is a math-
ematical technique used to characterize the manner in which 
a system such as the cranium modifies an input signal (the 
ABP waveform) to yield an output signal (the ICP waveform). 
Transfer function analysis is of particular value in the study of 

the cerebral windkessel, because it reveals dynamics such as 
resonance, anti-resonance, phase, notch, resonant peaks, etc. 
that are not readily discernable by inspection of the ABP and 
ICP waveforms in the time domain. The empirical study of the 
cerebral windkessel has been based almost entirely on analy-
sis of the transfer function of the ABP pulse to the ICP pulse 
[14,24-27]. A rigorous discussion of the mathematical basis for 
transfer function is beyond the scope of this review, but it is 
appropriate to review the basic principles of transfer functions 
as apply to the experimental identification and measurement of 
the windkessel notch. 

The transfer function (as relevant to analysis of the windkes-
sel) is a linear mapping of the Laplace transform of the input of 
the windkessel (e.g. the ABP pulse) to the Laplace transform of 
the output of the windkessel (e.g. the ICP pulse).

The Laplace transform is a mapping of a real function f t)(  
in the time domain to a complex function F s)(  in the fre-
quency domain. s  is a complex variable given by s jσ ω= +  

The Laplace transform is defined as

F s f t e dtst

0∫) )( (=
∞ −

 
For readers familiar with Fourier series, I note that the 

Laplace transform is similar to the Fourier transform, in that 
it identifies the frequency components of a signal. The Fou-
rier transform of a waveform is essentially the evaluation of the 
Laplace transform of the waveform on the imaginary ( jω ) axis, 
neglecting the real (σ ) axis. 

For this discussion, we assume linear intracranial pulsatile 
dynamics and we assume that the ICP pulse is of constant 
frequency (constant heart rate) and thereby we neglect tran-
sient effects. The ICP pulse understood in this way is a linear 
time-invariant system. This is a reasonable approximation for 
pulsatile intracranial dynamics, and methods can be applied to 
the transfer function analysis to correct for empirical deviations 
from linear time-invariance (such as fluctuations of heart rate) 
[14]. 

The transfer function H s)( of the cerebral windkessel thus 
understood is the linear mapping of the Laplace transform 
X s)( of the input (the ABP) to the Laplace transform Y s)(  of 
the output (the ICP):

 
H s

Y s
X s

ICP s
ABP s

) )
)

)
)( (

(
(
(= =

 

This means that transfer function analysis of the cerebral 
windkessel provides the frequency-by-frequency ratio of input 
and output magnitude and phase of each sinusoidal component 
of the ABP and the ICP. 

The mapping of input to output can be examined in more 
detail. If we express the ABP as a function x t)(  , it can also be 
expressed in terms of frequency ω :

ABP t x t Xe X ej t j t ABP) )( (= = =ω ω θ )( +
 

where 
X X e j ABP= θ
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X  corresponds to the amplitude of each frequency component 
of the ABP pulse and ABPθ  corresponds to the phase of each 
frequency component of the ABP pulse. 

Similarly, ICP can be expressed as a function y t)( :

ICP t y t Ye Y ej t j t ICP) )( (= = =ω ω θ )( +
 

for 
Y Y e j ICP= θ

 

Where Y  corresponds to the amplitude of each frequency 
component of the ICP pulse and ICPθ  corresponds to the phase 
of each frequency component of the ICP pulse. 

The response of the ICP pulse to each sinusoidal mode of 
oscillation of the ABP pulse entails a change in amplitude and 
phase of the sinusoid. If we denote each mode of oscillation of 
the ABP as ABP ω )(  and each mode of oscillation of the ICP as
ICP ω )( , the amplitude change is the gainG ω )( :

G H j
Y
X

ICP

ABP
ω ω

ω

ω
) ) )

)( ( (
(= = =

 

The phase change for the sinusoid of frequency ω is
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The phase change for the sinusoid of frequency is 

                                                                                    

Setting the ABP pulse as the reference phase, the phase of the sinusoidal component of the ICP 

pulse at each mode of oscillation  is the phase transfer function  evaluated at that 

frequency.   
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Setting the ABP pulse as the reference phase, the phase of 
the sinusoidal component of the ICP pulse ICPθ at each mode 
of oscillation ω  is the phase transfer function θ ω )(  evaluated 
at that frequency. 

This raises a question that is important in the physical inter-
pretation of the transfer function of the cerebral windkessel. In 
what way are the phase transfer function θ ω )(  and the imped-
ance phase ICPθ  of the ICP pulse related?

Consider the nature of the ICP pulse. The ICP pulse, as 
noted above, is a standing wave excited in the cranium by 
the ABP pulse. The ABP and the ICP pulse are, by Fourier’s 
theorem, the spectrum of individual modes of oscillation (fre-
quencies) that sum to produce the waveforms. This represents 
the physical reality of the pulse, not merely a mathematical 
device. The cranium has its own natural modes of oscillation, 
each with its own natural frequency, and its own amplitude and 
phase response. The ABP pulse is essentially an energy pump, 
and transmits energy in the form of a spectrum of oscillations 
of different frequency, amplitude and phase into the cranium. 
The cranium in turn is excited by this energy. However, the 
cranium has its own natural modes of oscillation, which vary in 
frequency, phase and amplitude.

The transfer function reflects the fact that specific modes of 
oscillation in the ABP pulse excite specific modes of oscilla-
tion in the ICP pulse. The energy transfer from the ABP to 
the ICP is work, and the work done by a harmonic force (the 
ABP pulse) on a harmonic oscillator (the ICP pulse) has several 
characteristics:

1. The work done by a harmonic force acting on a har-
monic velocity (or displacement) of different frequency 

is zero over a time interval comprising an integer num-
ber of force and displacement cycles.

2. The work done by a harmonic force in phase with a har-
monic displacement of the same frequency is zero over a 
cardiac cycle.

3. The work done by a harmonic force in phase with a 
harmonic velocity of the same frequency is Pv0 0π  over a 
cardiac cycle (where P0  is the force of the ABP pulse and 
v0  is the velocity). 

This means that the modes of oscillation of the ABP pulse 
only do work on (i.e. augment) modes of the ICP pulse that 
have velocities that are in phase with the modes of the ABP 
pulse. Thus the cranium is selective in its augmentation and 
suppression of the ABP pulse, and the ICP pulse is a function 
of this selectivity. The transfer function is a measure of this 
selectivity, both with respect to amplitude and with respect to 
phase. The velocity phase of the modes of the ICP pulse are in 
turn a function of the impedance phase ICPθ of the ICP, because 
the phases of the modes of oscillation of the cranium are deter-
mined by the impedance phase ICPθ  of the cranial contents. 

Thus, the cranium will selectively accentuate and suppress 
the ICP response to modes of the ABP pulse depending on the 
correspondence of the impedance phase ABPθ  of the ABP modes 
and the impedance phase ICPθ  of the ICP modes. 

The shape of the ICP waveform is determined by the 
interplay between ABP and ICP impedance. This interplay 
determines the manner in which the energy of the ABP pulse 
is transferred to the ICP pulse. If the intracranial impedance 
has an inertial bias, which it normally appears to have, this 
inertial bias (i.e. positive impedance phase ICPθ ) will cause the 
ICP waveform to be dominated by input from inertially biased 
modes of oscillation of the ABP pulse of the same impedance 
phase. In the steady state, this inertial bias will shape the ICP 
waveform, which will cause the waveform of the ICP to lead 
the waveform of the ABP both in the time domain (fig 1) and 
in the frequency domain (fig 9). Thus, the phase transfer func-
tion θ ω )(  correlates with the impedance angle ICPθ of the ICP 
pulse, evaluated in the frequency domain and the time domain, 
respectively. 

Leading phase at anti-resonance in damped windkessel
As noted, several investigators have found that the normal 

ICP pulse leads the arterial pulse [1,6,11-14]. Wagshul et al 
[14] used transfer function analysis to measure the average 
lead at roughly 60 degrees. The ICP pulse is a standing wave 
excited in the cranium by the ABP pulse, and therefore has a 
phase relation to the ABP which may lead or lag depending on 
the balance of intracranial inertia and elastance. So it is clear 
how the ICP can lead the ABP. But the question remains: why 
does the ICP pulse lead the ABP? Does it serve a physiological 
purpose? Consideration of the conditions necessary for optimal 
pulsation absorption in a damped windkessel suggests that it 
may serve a purpose. 

In windkessel theory, the heart rate is at the natural frequency 
of oscillation of the intracapillary space. Blood flow in large 
arteries is in phase with arterial blood pressure, because this 
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optimizes blood flow. This is supported by the observation that 
arterial pressure and flow are normally synchronous [30], which 
suggests resonance [1,6]. 

Consider the frequency ratio f  at which a damped windkes-
sel is most effective. At anti-resonance, the heart rate ω is equal 
to the natural frequency of the intracapillary space ICΩ , and for 
optimal effectiveness of pulsation absorption the natural fre-
quency of the extracapillary space ECω  must be half that of the 
heart rate:

 
So: 

K
M

k
m

2 2IC
IC

IC
EC

EC

EC

ω ω= Ω = = =
 

To examine the effect this modification of the damped wind-
kessel has on the phase of the extracapillary space, consider 
the general impedance equation for the ICP pulse as a simple 
single-degree-of-freedom forced harmonic oscillator with mass 
mEC , elastance kEC , and damping cEC driven at a frequency ω  
which is not necessarily its natural frequency. The ICP imped-
ance phase is
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Consider the substitution:

m
k

EC
EC

EC
2ω

= 

Substituting, we get
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Rearranging:
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Multiplying by ω
ω

Page 62 of 114 
 

Multiplying by  

                                                                    

This gives the general relationship between phase and frequency ratio for an oscillator driven at 

. To return to the analogy of the windkessel, within the center of the notch there is not a phase 

transition, and the ICP pulse behaves as a simple single-degree-of-freedom oscillator with respect 

to phase. If the heart rate is greater than the natural frequency of the extracapillary space, 

the impedance phase is positive. That is, the ICP leads the ABP. If the heart rate is less than 

the natural frequency of the extracapillary space , the impedance phase is negative—the ICP 

lags the ABP. 

Now, we can apply this analogy to the normal cerebral windkessel. Because  

                                                                              

Therefore 

                                                                                        

The natural frequency of the extracapillary space in an optimally damped cerebral windkessel is 

half that of the heart rate (and half the natural frequency of the intracapillary space). 
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This gives the general relationship between phase and fre-
quency ratio for an oscillator driven at ω . To return to the 
analogy of the windkessel, within the center of the notch there 
is not a phase transition, and the ICP pulse behaves as a simple 
single-degree-of-freedom oscillator with respect to phase. If the 

f 1
2

EC

IC

ω
=

Ω
=

heart rate ω is greater than the natural frequency ECω of the 
extracapillary space, the impedance phase θEC is positive. That 
is, the ICP leads the ABP. If the heart rate ω is less than the 
natural frequency of the extracapillary space ECω , the imped-
ance phase θ is negative—the ICP lags the ABP.

Now, we can apply this analogy to the normal cerebral wind-
kessel. Because 

f 1
1

1
2

EC

IC

ω
µ

=
Ω

=
+

= 

Therefore
2IC ECω ω= Ω = 

The natural frequency of the extracapillary space in an opti-
mally damped cerebral windkessel is half that of the heart rate 
(and half the natural frequency of the intracapillary space).

So the equation giving the general relationship between 
phase and frequency ratio for an optimally damped oscillator 
with a mass ratio µ of 1 driven at ω becomes
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So the equation giving the general relationship between phase and frequency ratio for an optimally 

damped oscillator with a mass ratio of 1 driven at becomes 

                                                                                 

which is a positive impedance phase for all values of , , and . Applied to the windkessel, 

this means that when the windkessel is most effective (i.e. in the region of anti-resonance), the ICP 

pulse will lead the ABP pulse. 
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windkessel is most effective (i.e. in the region of anti-resonance), the 
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also explains the progressive phase lag of ICP with intracranial 
hypertension identified by several investigators [11,14]. Intra-
cranial hypertension increases intracranial elastance kEC , raising 
the square of the natural frequency ECω  of the extracapillary 
space proportionately to kEC :

k
mEC
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2ω =
 

Since

Page 64 of 114 
 

                                                                                                  

if the heart rate remains the same and increases, the numerator becomes less positive, 

making the impedance phase  progressively less positive, resulting in corresponding shifts of 

ICP phase to negative as the elastance (and ICP) increase.  

Intuitively, the normal phase lead of ICP may be understood as follows. Damping 

(resistance) in the cranium suppresses motion of the extracapillary fluid pulse. This is frictional 

loss, because damping is (by definition) energy loss by dissipation. To overcome this frictional 

suppression of the extracapillary pulse, which is a suppression of the pulsation absorber effect of 

the windkessel, an increase in mass of the pulse is necessary, because inertia mitigates impediment 

due to frictional force. This principle is widely recognized in ballistics: a heavier projectile is more 

accurate than a light projectile because it is less deflected by wind friction. A damped windkessel 

is more effective if there is an inertial bias in its impedance, which helps overcome damping. The 

phase lead of ICP with respect to ABP represents an optimally effective damped windkessel. This 

is apparent conceptually and can be demonstrated mathematically.  

 

Stress in brain tissue associated with windkessel function and impairment  

The process of windkessel pulsation absorption necessarily entails motion in the 
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if the heart rate ω remains the same and kEC increases, the 
numerator becomes less positive, making the impedance phase 
θ  progressively less positive, resulting in corresponding shifts 
of ICP phase to negative as the elastance (and ICP) increase. 

Intuitively, the normal phase lead of ICP may be understood 
as follows. Damping (resistance) in the cranium suppresses 
motion of the extracapillary fluid pulse. This is frictional loss, 
because damping is (by definition) energy loss by dissipation. 
To overcome this frictional suppression of the extracapillary 
pulse, which is a suppression of the pulsation absorber effect 
of the windkessel, an increase in mass of the pulse is necessary, 
because inertia mitigates impediment due to frictional force. 
This principle is widely recognized in ballistics: a heavier pro-
jectile is more accurate than a light projectile because it is less 
deflected by wind friction. A damped windkessel is more effec-
tive if there is an inertial bias in its impedance, which helps 
overcome damping. The phase lead of ICP with respect to ABP 
represents an optimally effective damped windkessel. This is 
apparent conceptually and can be demonstrated mathemati-
cally. 

Stress in brain tissue associated with windkessel 
function and impairment 

The process of windkessel pulsation absorption necessar-
ily entails motion in the extracapillary space. It is in fact the 
extracapillary motion that absorbs the radial pulsatility from the 
capillaries. Normal function of the windkessel causes motion 
stress in the brain, and abnormal function of the windkessel 
can, conceptually, either increase or decrease that stress. Con-
ditions such as arteriosclerosis and hydrocephalus can impair 
the windkessel, and it is useful to consider the alterations of 
the stress on functional neurological tissue occasioned by these 
impairments. 

For the calculation of stress on brain tissue associated with 
the windkessel, we first need to determine the optimal damping 
ratio. This can be done for a dynamic vibration absorber [36], 
which gives for optimal damping
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Averaging between these two peaks gives the optimum damp-
ing for the cerebral windkessel:
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For 1µ=  the optimal damping ratio is:

c
c

0.22
c

= 

To determine the stress in the brain tissue in the damped 
windkessel model, we will make use of the fact that at resonance 
the phase angle between the pressure and flow is near zero and 
the phase angle between pressure and the displacement is -90 
degrees (at resonance, displacement lags pressure and flow by a 
quarter cycle). 

Therefore the work done per cycle by force P0  is

W P x P xsin90IC IC0
0

0π π= =
 

This holds approximately true for modest deviations from 
resonance, because the sine changes rather little with deviations 
around 90 degrees. 

The work done by damping is proportional to the product of 
the damping force and the displacement. The damping force is 
exactly in phase with the velocity (by definition) and thus leads 
the displacement by a quarter cycle near resonance

W c x x c xdissipated EC rel rel EC rel
2π ω π ω)(= =

 

where xrel is the relative displacement amplitude between the 
intracapillary space and the extracapillary space and is a mea-
sure of the pulsatile stress on the brain. 

Bringing the two equations together we get

P x c xIC EC rel0
2π π ω=

 

which is
x

P x
crel
EC

2 0 1

ω
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In dimensionless variables this is:
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This equation is quite valuable for applying windkessel theory to hydrocephalus. To the left of the 

equal sign, is the (square) of the displacement amplitude between the intracapillary space 

and the extracapillary space, which is a measure of the stress on the elastance elements in the 

extracapillary space—effectively, the strain on the brain tissue through which arterial pulsations 

are absorbed. To the right of the equal sign are two terms. is the displacement of the capillary 

walls, and which is a term of proportionality between strain on brain tissue and capillary 

pulsatility.  is the ratio between the heart rate and the natural frequency of the intracapillary 

space, assumed to be near 1. is the damping ratio, and correlates with resistance in the 

extracapillary tissues, most notably resistance in the CSF spaces.  

Conceptually, brain tissue stress can be expressed: 

Brain tissue stress  Capillary wall motion                                    

Pulsatile brain tissue stress is proportional to capillary wall motion and to the inverse of 

damping. Brain tissue stress is inversely proportional to damping. The meaning of the equation is 

that damping (high resistance in CSF pathways) mitigates brain tissue stress caused by windkessel 

dysfunction. The motion of the brain tissue is part of the absorber component of the windkessel, 
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is the (square) of the displacement amplitude between the intra-
capillary space and the extracapillary space, which is a measure 
of the stress on the elastance elements in the extracapillary 
space—effectively, the strain on the brain tissue through which 
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arterial pulsations are absorbed. To the right of the equal sign 
are two terms. 

x
x
IC

STIC

is the displacement of the capillary walls, and
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c

which is a term of proportionality between strain on brain tis-
sue and capillary pulsatility. g  is the ratio between the heart 
rate and the natural frequency of the intracapillary space, 
assumed to be near 1. 

c
c
EC

c

is the damping ratio, and correlates with resistance in the extra-
capillary tissues, most notably resistance in the CSF spaces. 

Conceptually, brain tissue stress can be expressed as:

Brain tissue stress ∝  

Capillary wall motion 
Damping

1•   

That is, pulsatile brain tissue stress is proportional to capil-
lary wall motion and to the inverse of damping. Brain tissue 
stress is inversely proportional to damping. The meaning of the 
equation is that damping (high resistance in CSF pathways) 
mitigates brain tissue stress caused by windkessel dysfunction. 
The motion of the brain tissue is part of the absorber compo-
nent of the windkessel, and with impairment of the windkessel 
the absorber (brain tissue) may move with greater amplitude 
or less amplitude depending on the damping, placing more or 
less stress on brain tissue. If the damping in the absorber (e.g. 
resistance in the CSF spaces) is low, then there is high stress on 
the brain tissue with windkessel impairment. If the damping 
in the CSF spaces is high, this mitigates the strain on the brain 
by effectively “gluing” the extracapillary space to the intracapil-
lary space. This gluing together of the intra- and extra-capillary 
spaces is very dangerous for the capillaries, because it may 
catastrophically disable the windkessel, but it tends to reduce 
somewhat the motion stress that windkessel dysfunction causes 
on the brain tissue itself. 

Physiologically, this implies that windkessel dysfunction due 
to high resistance in the CSF spaces can cause substantial cap-
illary damage and cerebral edema, but the pulsatile stress on 
the brain is mitigated by the high resistance. Low resistance 
in the CSF spaces, on the other hand, protects the capillaries 
but magnifies pulsatile stress on the brain caused by windkessel 
dysfunction. 

Brain stress and hydrocephalus
It is interesting to apply windkessel-related brain stress to 

communicating hydrocephalus. Proper functioning of the 
windkessel depends on appropriate ratios of inertia, elastance, 
damping and heart rate. There is good evidence that experi-
mental hydrocephalus and NPH are associated with windkessel 

impairment [26,27]. Conceptually, this windkessel impairment 
in hydrocephalus may take two forms: excessive elastance and 
excessive resistance. In hydrocephalus, extracapillary elastance 
and/or damping may be elevated, causing an imbalance in 
absorber dynamics and impairment of the windkessel. 

In hydrocephalus caused by obstruction of the CSF spaces (for 
example, from subarachnoid hemorrhage or meningitis), there 
is significant increase in damping (resistance) in the cranium. 
This increased resistance is particularly damaging to the wind-
kessel, because the absorber mechanism depends on free flow of 
CSF to link arterial pulsations to venous pulsations. Without 
free flow of CSF, the intracapillary space and the extracapillary 
space are essentially “glued” together and the flow of pulsations 
in the cranium loses its two-degree-of-freedom character and 
behaves more like a single-degree-of-freedom oscillator, with 
high amplitude resonance at synchrony between the capillary 
pressure and flow. This is quite dangerous and may cause brain 
edema, intracranial hypertension and loss of capillary integrity, 
requiring CSF diversion to lower elastance by lowering ICP and 
to lower resistance by providing an additional parallel pathway 
for pulsations. This restoration of normal elastance and resis-
tance helps restore normal windkessel dynamics.

Counterintuitively, high damping in the CSF spaces in 
obstructive hydrocephalus is relatively protective of brain tissue 
(although it is destructive of capillary beds). With high 
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is relatively small. The increase in capillary pulsatility with 
windkessel impairment in obstructive hydrocephalus is life-
threatening due to edema and capillary disruption, but pulsatile 
brain tissue stress is mitigated by the same increase in resistance 
that endangers the capillaries. 

Now consider the application of windkessel-related brain 
stress to NPH. The cause of NPH is not well established, but 
it is clear that ordinarily there is no significant obstruction to 
CSF flow within the CSF spaces. NPH appears to be associated 
with arteriosclerosis, and Greitz, Bateman and others [2,3,21] 
have suggested that restriction of subarachnoid arterial pulsatil-
ity due to arteriosclerosis plays a role. NPH has been shown to 
be associated with windkessel dysfunction [26].

Windkessel impairment in NPH is of a different nature than 
windkessel impairment in obstructive hydrocephalus. In NPH, 
the CSF spaces are open. In obstructive hydrocephalus, the 
CSF spaces are obstructed. The equations show that open CSF 
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spaces, in the setting of windkessel dysfunction, cause consider-
able stress on brain tissue. In NPH the windkessel dysfunction 
is less destructive of capillary beds (the two-degree-of-freedom 
nature of the cerebral windkessel remains intact—the extracap-
illary space is not “glued” to the intracapillary space.) However, 
in NPH the motion stress on brain tissue may be greater than 
in communicating hydrocephalus caused by CSF pathway 
obstruction, because with low 
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is proportionately large. 
The windkessel impairment in NPH is not life-threatening, 

but there is considerable strain on brain tissue with windkessel 
impairment. This would be expected to be most severe in the 
tissue adjacent to the CSF pathways, such as the periventricular 
white matter, through which pathways that mediate gait and 
urinary continence project. 

Conceptually, from the perspective of windkessel theory, 
obstructive hydrocephalus stresses capillaries but protects brain 
tissue from motion stress. NPH protects capillaries but stresses 
brain tissue. This theoretical perspective is consistent with the 
life-threatening manifestations of obstructive hydrocephalus, 
and the gait apraxia and urinary incontinence, without threat 
to life, that are characteristic of NPH. 

In windkessel theory, NPH would be particularly respon-
sive to ‘tuning’ of the programmable shunt to obtain optimal 
intracranial elastance. Unlike the dynamics of obstructive 
hydrocephalus, in which the normal two-degree-of-freedom 
windkessel is ‘glued’ together to create a life-threatening one-
degree-of-freedom resonant system, NPH preserves the 
two-degree-of-freedom absorber mechanism of the windkes-
sel, but ‘detunes’ it by increasing elastance. This may account 
for the responsiveness of NPH to tuning with programmable 
valves, as compared with obstructive hydrocephalus, which is 
not as responsive to valve adjustment. 

Energy, power and cerebral blood flow
Work is done by the heart in propelling cerebral blood flow, 

and there are obvious physiological reasons why cerebral perfu-
sion should be maximally efficient. Milnor has remarked [7] 
that in a young healthy animal the arterial tree is a remarkably 
efficient diffuser, meaning that there is vanishingly little reflec-
tance of kinetic energy retrograde through the arterial tree back 
to the left ventricle. Virtually all of the energy of circulation 

is used to propel blood through the microvasculature. Milnor 
notes that the degree of efficiency achieved by the arterial perfu-
sion is greater than has been accomplished in most sophisticated 
engineering applications. 

Yet the heart is a pulse pump, which presents a problem for 
efficient perfusion. Consider a simple model of the cerebral cir-
culation, in which the pressure is:

P P tsin0 ω ϕ)(= +
 

Note that the phase angle ϕ  represents the displacement 
phase between the pressure and the displacement, not the 
impedance phase angle between the pressure and the flow. 

It is helpful to derive the work done per unit time (the 
power) associated with cerebral perfusion. The displacement of 
the blood distally in the cerebral arterial tree is x. The work 
done by a small displacement is force multiplied by distance

W Pdx P dx
dt
dt= =

 

tω  varies from 0 to 2π , and thus t varies from 0 to 2π
ω

.
The work done by one cardiac cycle is 
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The first integral is zero and the second is π , so the work 
done in a cardiac cycle is 

W P x sin0 0π ϕ= 

Note that the work available to propel blood is a function 
of the displacement phase ϕ . If the heart beat is out of phase 
(out of sync) with the cranial contents, cerebral blood flow is 
impaired. 

An equivalent way to characterize the work done per unit 
time by cerebral blood flow is the power factor, which is given 
by the cosine of the impedance phase for the intracapillary 
(intravascular) space

Power factor =
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Power factor is the ratio of active (effective) power to appar-
ent power (the algebraic sum of pressure and flow). When the 
power factor is 1 (at resonance and anti-resonance), the work 
of cerebral blood flow is optimized, with minimal reflection of 
kinetic energy back to the left ventricle. 
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The work done by the heart on cerebral blood flow is pro-
portional to the sine of the displacement phase ϕ  between the 
pressure and displacement of the blood, and is proportional 
to the cosine of the impedance phase θ  between the pressure 
and the flow. This concept is important in understanding the 
role of resonance and of the windkessel in cerebral blood flow. 
Cerebral blood flow is maximally efficient when pressure and 
flow are in phase and pressure and displacement of blood are 
a quarter cycle (displacement lagging) out of phase, which rep-
resents resonance. This represents the maximal work that can 
be done on propelling blood distally by the left ventricle and 
represents optimal and efficient cerebral blood flow. However, 
it also entails high amplitude oscillations of vessel walls, which 
endangers capillaries. 

It is in this principle of pulsatile flow that the nature of the 
problem addressed by the windkessel is clear: the most efficient 
cerebral blood flow is when the ABP is synchronous with the flow 
pulse. This is resonance, and it characterizes efficient blood flow. 
However, resonance in the cranium represents a high amplitude 
response in the microvasculature, which endangers capillaries. 
This would seem to create an impasse. Synchrony between 
pressure and flow is necessary to maximize cerebral blood flow, 
but asynchrony—mutual cancellation actually—is necessary to 
protect capillaries from pulsatility. 

The cerebral windkessel solves this problem by the pulsation 
absorption mechanism. The windkessel creates a two-degree-of-
freedom system tuned to anti-resonance, in which the arterial 
pulse is transposed through the CSF to the veins. The power 
factor is one and cerebral blood flow is maximally efficient, 
and at the same time the pulse is short-circuited through the 
CSF to the veins, rendering the capillary perfusion pulseless. 
Remarkably, the resonant and anti-resonant characteristics of 
intracranial blood flow are created by the same mechanism—
the arterial-CSF-venous pump. The arterial-CSF-venous pump 
transposes the arterial pulse efficiently (resonance) and absorbs 
the arterial pulsations in order to protect the capillaries (anti-
resonance). Thus, the windkessel solves the impasse of pulsatile 
cerebral perfusion by the use of a dual purpose pulse pump: 
the transposition of the arterial pulse through the CSF to the 
veins simultaneously optimizes cerebral blood flow and protects 
capillaries from arterial pulsatility. 

Another perspective on the way the windkessel works is that 
it removes the kinetic energy of radial capillary motion from 
the capillaries and transfers that kinetic energy to the absorber 
mechanism in the extracapillary space. As noted, the prime 
absorber mechanism in the extracapillary space is the compres-
sion and relaxation of intracranial veins. Thus, the windkessel, 
when working properly, transfers the kinetic energy of radial 
capillary pulsatile motion to venous blood flow, thereby pro-
tecting the capillaries while efficiently using the kinetic energy 
thus diverted to pump venous blood, maintaining optimal cere-
bral blood flow. 

Otto Frank’s hydraulic integrator
The adaptation of intracranial dynamics to pulsatile perfu-

sion from the heart has analogues in the extracranial systemic 

circulation. The cerebral windkessel is analogous in important 
ways to the mechanism for the smoothing of blood flow in the 
aorta that was described by physiologist Otto Frank in the 19th 
century [37].

Frank noted that during systole a portion of the left ventricu-
lar stroke volume was stored in the expansion of the aorta, and 
that during relaxation of the aorta in diastole the stored blood 
returned to the circulation. Frank termed this rhythmic storage 
and release of a portion of the systolic stroke volume a “hydrau-
lic integrator”. He proposed that by diminishing systolic flow 
and augmenting diastolic flow, the aortic hydraulic integrator 
served to convert much of the pulsatile flow of blood at the 
aortic root into smoother flow more distally in the circulation. 
This was part of the systemic windkessel.

A closer look at pulsatile intracranial dynamics suggests that 
the dynamics of the hydraulic integrator in the aorta and of 
the cerebral windkessel in the cranium share similarities, and 
that the arterial-CSF-venous pump in the cranium is a type of 
hydraulic integrator adapted to the rigid confines of the cranial 
cavity.

In the cerebral arteries, a portion of the cerebral systolic 
stroke volume is stored in the expanded arterial walls, in the 
same way that a portion of the aortic stroke volume is stored 
in the expanded aortic walls. Because the cerebral arteries, 
unlike the aorta, are encased in the rigid cranium, the elastance 
provided by the arterial walls in the cranium is insufficient to 
permit expansion and systolic storage of blood volume. In the 
cranium, arterial expansion is made possible by the easily dis-
placed venous blood, which is the only appreciable elastance 
in the cranium that can accommodate rapid changes in intra-
cranial volume [18]. The CSF serves as the hydraulic coupling 
between the cerebral arteries and veins, thus solving the prob-
lem that the complex geometry of the cerebral vasculature and 
the encasement in the rigid cranium poses for the hydraulic 
integrator.

In a manner analogous to the aortic circulation, the cerebral 
windkessel is ‘charged’ by arterial expansion and venous ejec-
tion in systole and ‘discharged’ by arterial relaxation and venous 
filling in diastole. The arterial pulse thus circumvents the capil-
lary circulation. CSF provides the necessary hydraulic linkage 
for this system to work. 

The windkessel and physiological regulation
The effectiveness and efficiency of the cerebral windkes-

sel—the efficient circulation through the cranium of energy in 
the form of pulsations that bypasses the capillary circulation— 
depends critically on anti-resonance. Because anti-resonance is 
achieved by a specific ratio of variables in the cranium, it is 
likely that there are physiological mechanisms, not yet under-
stood, that maintain it. Maintenance of anti-resonance depends 
on maintenance of a specific impedance phase, which in turn 
depends on maintenance of appropriate ratios of inertia (mEC , 
 which corresponds to the stroke volume of blood), elastance 
( kEC , which correlates with venous pressure), damping ( cEC , 
 which represents vascular resistance and structural damping) 
and frequency (ω , which is the heart rate in radians/second). 
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Maintenance of this balance is necessary to a system of auto-
regulation of the windkessel. 

For impedance to be optimal, inertial reactance ( mECω ) and 
elastic reactance ( k     / ωEC ) must be balanced:
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The windkessel depends on a balance of physiological vari-
ables (e.g. heart rate) that change constantly, and thus the 
cerebral windkessel is probably autoregulated. It is theoretically 
possible that there is sufficient width of the windkessel notch 
that physiological alterations in heart rate and other parameters 
don’t cause significant dysfunction. Yet it seems likely that the 
windkessel is, to a greater or lesser extent, maintained actively. 
What is the physiological mechanism for windkessel auto-
regulation? It would seem that alteration of heart rate would 
be a particularly effective method of maintaining the balance 
of inertial and elastic reactance, because inertial reactance 
is directly proportional to heart rate and elastic reactance is 
inversely proportional to heart rate. Fine tuning of heart rate, 
in the setting of physiological changes in cerebral stroke volume 
and elastance, would maintain the balance of inertial and elas-
tic reactance and the anti- resonance necessary for the cerebral 
windkessel.

Yet, how can high impedance resonance be maintained 
physiologically if it is so sensitive to heart rate, given that heart 
rate varies significantly during daily life? It is noteworthy that 
there is a well characterized system of autoregulation of cere-
bral hemodynamics that is very sensitive to heart rate—cerebral 
blood flow, which is the product of heart rate and cerebral stroke 
volume. Cerebral blood flow is known to be autoregulated and 
maintained to within tight parameters—50 ml/min per 100 
grams of brain tissue and is preserved over a broad range of 
60-150 mm Hg mean arterial perfusion pressure [38,39]. 

Autoregulation of the cerebral windkessel probably exists, 
and it may be related to the autoregulation of cerebral blood 
flow. Inertial reactance mECω  is the product of heart rate and 
cerebral stroke volume, and thus corresponds to the pulsatile 
component of cerebral blood flow. Autoregulation of the iner-
tial reactance of the cerebral windkessel may be accomplished 
by the same physiological mechanisms that autoregulate cere-
bral blood flow. 

Autoregulation of elastic reactance
 

kEC
ω

can be accomplished by alterations in cerebrovenous elastance, 
which in thin-walled veins is determined primarily by cere-
brovenous pressure. Although the regulation of cerebrovenous 
pressure is not well understood, there is evidence that cere-
brovenous dynamics are regulated in part by smooth muscle 
sphincters at the convergence of the cortical veins and the supe-
rior sagittal sinus [40], and that this myoendothelial sphincter 
is innervated by the autonomic nervous system [38,41-44]. 

Venous constriction raises venous pressure and increases the 
elastance of the ICP pulse.

Increased sympathetic tone increases heart rate and is a 
potent constrictor of cerebral veins [40]. Thus, intracranial 
venous elastance and heart rate are likely to vary together with 
autonomic regulation, which would tend to maintain constant 
elastic reactance despite changes in heart rate. Autoregulation of 
elastic reactance and inertial reactance, both of which depend 
on autonomic tone, would preserve high impedance resonance 
and maintain the cerebral windkessel with changing heart rate. 

Thus the well-characterized autoregulation of cerebral blood 
flow and the theoretical but likely autoregulation of the cerebral 
windkessel share several important characteristics, suggesting 
commonality between autoregulation of cerebral blood flow 
and autoregulation of the flow of pulsations in the brain.

DISCUSSION
In addition to the mass circulation of blood and CSF, energy 

circulates through the cranium. Like mass, energy flux in the 
cranium is conserved. Kinetic energy from the left heart passes 
through the cranial contents and returns to the right heart. 
Some of this kinetic energy is in the smooth bulk flow of blood. 
Some of the kinetic energy is in the pulsatile motion of the cra-
nial fluids and tissues. Within the cranium, the pulsatile energy 
flow is an exchange of inertial kinetic energy and elastic poten-
tial energy between fluids and tissues, as well as the dissipation 
of energy in the form of heat caused by damping. 

Cerebral perfusion is a piston driven by a pulse pump (the left 
ventricle), and the ICP pulse is a rhythmic exchange of kinetic 
and potential energy—a standing wave—driven by the arterial 
pulse. This circulation of pulsatile kinetic and potential energy 
does not involve the net displacement of blood or CSF—vessels 
and fluids merely oscillate back and forth in the cranium with 
the heartbeat. 

The details of this energy flow of intracranial pulsations are 
physiologically important, because cerebral blood flow entails 
a paradox: cerebral perfusion must be both resonant and anti-
resonant. That is, in order to maximize the efficiency of cerebral 
perfusion, arterial pressure and flow must be synchronous, 
which is resonance. But resonant flow is destructive of capil-
laries, because it entails high amplitude oscillations of capillary 
walls. So safe perfusion of capillary beds requires anti-reso-
nance—the suppression of pulsatility in the microvasculature. 
This means that cerebral perfusion entails two apparently 
contradictory principles: efficient cerebral blood flow must be 
resonant, and safe cerebral blood flow in the microvasculature 
must be anti-resonant. 

The cerebral windkessel solves this physiological impasse, 
and it does so by the application of design principles of vibra-
tion control to cerebral blood flow. The cranium is a band stop 
filter. Arterial pulsations are reflected through the CSF to the 
veins, and this transposition of the pulse by venous compres-
sion and expansion provides an elastic force that continuously 
opposes the radial motion of the capillary walls (fig 6 and 
7). This maintains the resonant dynamics necessary for effi-
cient perfusion and the anti-resonant dynamics necessary for 



Volume 2019  |   Issue 3 |   Page 29

The Cerebral Windkessel as a Dynamic Pulsation Absorber

capillary protection. More succinctly, the resonant CSF-venous 
pump is an anti-resonant pulsation absorber. Simultaneity of 
pressure and flow in the large intracranial vessels is resonant, 
and the rhythmic impedance of capillary expansion in systole 
and admittance of capillary expansion in diastole is anti-reso-
nant. Resonance and anti-resonance in cerebral perfusion are 
accomplished by the same mechanism: the transposition of the 
arterial pulse through the CSF to the veins. The windkessel 
thus maintains efficient and safe propulsion of blood through 
the cerebral vasculature. 

Thus, the essence of the windkessel is the CSF-venous pump, 
which provides transposition of the arterial pulse through the 
CSF to the veins and the elastance for pulsation absorption. 
The windkessel depends on a balance of physiological variables. 
Intracranial inertia, elastance, damping and heart rate must 
balance to maintain proper impedance. Imbalance of these 
forces threatens the microvasculature with resonant, rather 
than anti-resonant, perfusion, which can be rapidly destruc-
tive of thin-walled capillaries. Maintenance of this balance 
presupposes a system of windkessel autoregulation, which is 
unexplored but probably exists. There is likely commonality 
between windkessel regulation and regulation of cerebral blood 
flow and the maintenance of autonomic tone in the cerebral 
vasculature. 

Salient equations in windkessel theory
The mathematics underlying windkessel dynamics can be 

summarized by a few salient relationships, given below. 
The natural frequency of the ICP pulse is the square root 

of the ratio of intracranial elastance to the mass of the ICP 
pulse:

k
mICP
ICP

ICP

ω = 

Where ICPω  is the natural frequency of oscillation of the cra-
nial contents, kICP  is the intracranial elastance, and mICP  is the 
mass of the ICP pulse.

The impedance phase between intracranial pressure and 
flow is the arctangent of the ratio between the total reactance 
(the difference between inertial and elastic reactance) and 
the damping in the cranium:
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Where ω  is the heart rate (in radians), θ  is the impedance 
angle, and cICP  is the intracranial damping, and mICP  is the 
mass of the ICP pulse. mICPω is the inertial reactance and

 

kICP
ω

is the elastic reactance. Positive impedance phase causes pres-
sure to lead flow, and negative impedance phase causes pressure 
to lag flow. In the frequency domain, positive impedance causes 

the ICP to lead the ABP in the phase transfer function, and 
negative impedance causes the ICP to lag the ABP. 

The phase transfer function of ABP to ICP pulse is:

H jarg ( ) ( )ICP ABPθ ω ω θ ω θ ω) )( (= 



 = −

The phase transfer function uses the input (ABP) phase as the 
reference phase, and it denotes the phase relationship between 
modes of oscillation in the ABP pulse and the ICP pulse in 
the frequency domain. The phase transfer function θ ω )( is a 
function of the ratio of ICP impedance phase 

ICPθ and ABP 
impedance phase ABPθ evaluated in the frequency domain. 

The volume displacement phase of the ICP pulse is:
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Where  is the displacement phase of the volume of the ICP pulse relative to the pressure, 
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Where ϕ  is the displacement phase of the volume of the ICP 
pulse relative to the pressure, c0  is the critical damping, ICPω  
is the natural frequency of the cranial contents, ω  is the heart 
rate (in radians), and cICP  is the intracranial damping. During 
normal dynamics, the displacement phase of the pulse of the 
cranial contents, as measured by flow MRI, lags the ICP pulse 
and the flow pulse by a quarter cycle. 

Resonant capillary displacement with a single degree of 
freedom:
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x0  is the maximal displacement of the pulse, 

n

ω
ω

is the ratio of the heart rate frequency to the natural frequency 
of the oscillator, P0  is the maximum forced pressure, k is the 
elastance and c

c0

the damping ratio, which is the ratio of oscillator damping to 
critical damping. This equation expresses the displacement for 
a single degree of freedom system, such as would occur in the 
capillaries without the windkessel. Note that when the heart 
rate ω  approaches the capillary space’s natural frequency nω , 
the displacement of the capillary walls is at a maximum extre-
mum, which would be destructive to the microvasculature. 

Anti-resonant displacement of capillary walls in an 
undamped windkessel with two degrees of freedom:
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Where xIC  is the capillary wall displacement, xSTIC  is the 
maximal static displacement of the capillary wall, ω  is the heart 
rate (in radians), ECω  is the natural frequency of the extracapil-
lary space (i.e. most of the cranial contents), µ is the mass ratio 
of the vascular and ICP pulse, which is by definition 1. The 
equation demonstrates that in an undamped windkessel at anti-
resonance, in which the natural frequency of the extracapillary 
space equals the heart rate, the numerator goes to zero and the 
capillary walls do not move with the pulse. The actual windkes-
sel has damping, which alters the optimal frequency ratio and 
inescapably permits a small amount of capillary wall motion. 

The displacement of the extracapillary space (most of the 
cranial contents) in an undamped windkessel: 
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Where xIC  is the capillary wall displacement, xSTIC  is the 
maximal static displacement of the capillary wall, ω  is the heart 
rate (in radians), ECω  is the natural frequency of the extracap-
illary space (i.e. most of the cranial contents), µ  is the mass 
ratio of the vascular and ICP pulse, which is by definition one. 
The equation demonstrates that the extracapillary space in the 
cranium will oscillate at anti-resonance and absorb pulsations 
from the capillaries. 

Pressure and flow impedance phase:
 

P FICP ICP θ= ∠
 

 

F PICP ICP θ= ∠ −
 
Where 



PICP  is pressure, 


FICP  is flow, θ  is the impedance 
angle, with the relationship between pressure and flow expressed 
in polar form. Inertia, elastance and heart rate have opposite 
effects on the timing pressure and flow pulses. Positive reac-
tance (excess inertia) causes flow to lag pressure, and negative 
reactance (excess elastance) causes flow to lead pressure.

Location of resonance peaks in frequency domain:

1.62resonant HIGHω ω=
 

0.62resonant LOWω ω=
 
Where ω  is the central frequency, resonant HIGHω  is the frequency 

of the resonant peak above the windkessel notch, and resonantLOWω
is the frequency below the windkessel notch. This equation is 
derived from the undamped windkessel model, and the actual 
peaks, with damping, will be farther apart (see bandwidth and 
quality factor) 

Bandwidth and quality factor of notch: 

Q
anti resonantω

ω
∆  = −

 

Where ω∆  is the bandwidth of the notch, Q  is the quality 
factor, and anti resonantω −

 is the central frequency of the notch. Q  

is the ratio of energy stored to energy dissipated by intracranial 
pulsations per cardiac cycle. Q  describes the ‘sensitivity’ or nar-
rowness of the notch, and bandwidth describes the width of 
the notch. 

Brain tissue motion stress due to windkessel: 
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is the (square) of the displacement amplitude between the intra-
capillary space and the extracapillary space, which is a measure 
of the stress the brain tissue due to the windkessel.
 

x
x
IC

STIC

is the dimensionless displacement of the capillary walls, and

 
g
c
c

1

2 EC

c

 

is the proportionality between strain on brain tissue and capil-
lary pulsatility. g  is the ratio between the heart rate and the 
natural frequency of the intracapillary space, which is approxi-
mately 1. 

c
c
EC

c

is the damping ratio, and correlates with resistance in the extra-
capillary tissues, most notably resistance in the CSF spaces. 
Conceptually, the equation can be written

Brain tissue stress ∝  

Capillary wall motion 
Damping

1•   
  

That is, brain tissue stress is proportional to capillary wall 
motion and inversely proportional to intracranial damping. 

Influence of windkessel on power factor of cerebral blood 
flow: 

Power factor =
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Where θ  is the impedance angle, ω  is the heart rate (in 
radians), cICP  is the intracranial damping, and mICP is the mass 
of the ICP pulse. This equation expresses the fact that arte-
rial pulse pressure and flow need to be resonant (in phase) for 
maximally efficient cerebral blood flow. This corresponds to 
anti-resonant dynamics in the capillaries, because the CSF-
venous pump, which is part of the resonant flow in the arteries 
and veins, is also the dynamic absorber (anti-resonant) elastance 
of the windkessel. 
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6. During systole, CSF links arterial expansion to venous 
compression. During diastole, CSF links venous expan-
sion to arterial relaxation. The systolic/diastolic attenu-
ation/augmentation of arterial flow and synchronous 
augmentation/attenuation of venous flow provides 
pulseless capillary perfusion. 

7. Normal intracranial dynamics entails maximal effi-
ciency of cerebral blood flow and minimal pulsatility in 
the cerebral microvasculature, both of which depend on 
normal windkessel function.

8. Windkessel dysfunction can occur as the result of 
changes in the balance of heart rate, inertia, elastance 
and damping in the cranium, with loss of anti-reso-
nance.

9. Loss of anti-resonance causes retrograde arterial reflec-
tion of the arterial pulse, inefficiency of cerebral blood 
flow, increased radial pulsatility in the cerebral micro-
vasculature, cerebrovenous hypertension (from impair-
ment of the CSF-venous pump), cerebral edema and 
loss of capillary integrity. This increases intracranial 
elastance and predisposes to a cascade of windkessel 
degradation. 

10. Maintenance of anti- resonance presupposes a system of 
physiological autoregulation of the windkessel, which 
entails effective ratios between heart rate and intracra-
nial inertia, elastance, and damping.

Correspondence of windkessel theory with experiment
With these principles in mind, it is noteworthy that windkes-

sel theory provides an explanation for several perplexing aspects 
of intracranial dynamics. Windkessel theory provides an expla-
nation for 

1. the mechanism by which capillary pulsatility is mini-
mized in the cranium while synchrony of arterial pres-
sure and flow is preserved [1,3,15,30]. (The windkessel 
is a dynamic pulsation absorber tuned to the heart rate).

2. why the intracranial venous waveform is synchronous 
with the arterial pulse and manifests some characteris-
tics of the arterial waveform [3,8,10]. (The windkessel 
depends on the arterial—CSF—venous pump, which 
transposes the arterial pulse through the CSF to the 
veins.)

3. the important physiological role for CSF. CSF is the hy-
draulic link between arteries and veins that makes trans-
position of the arterial pulse to the veins, bypassing the 
capillaries, possible. The CSF is essential to the resonant 
properties of windkessel (efficient cerebral blood flow) 
and the anti-resonant properties of the windkessel (pro-
tection of capillary beds) [1,2]. 

4. the observation that normal ICP pulse amplitude is at 
a minimum extremum, compared to ICP pulse ampli-
tude at both high and low ICP [18,19]. (The windkessel 
is a tuned dynamic pulsation absorber that is most ef-
fective at normal intracranial elastance.)

Impedance angle and frequency ratio of extracapil-
lary space and heart rate; the phase lead of ICP in normal 
dynamics: 
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Where θ  is the impedance angle, ω  is the heart rate (in radi-
ans), cEC  is the intracranial damping, mEC  is the mass of the 
ICP pulse, and kEC is the elastance of the extracapillary space. 
This equation expresses the impedance angle as a function of 
the relation between the heart rate and the natural frequency 
of the extracapillary space. Damping in the cranium makes it 
necessary for the windkessel to have a dominance of inertia over 
elastance in order to optimize the windkessel. This means that 
the ratio of

 

EC

ω
ω

 

is greater than 1, which means that the impedance angle of the 
optimal windkessel is somewhat positive. Positive impedance 
angle causes the ICP pulse to lead the arterial pulse, which has 
been observed experimentally [1,6,11-14]. 

Conceptual summary of the cerebral windkessel
Our understanding of the cerebral windkessel is based on 

the mathematics of its dynamics, which is the dynamics of 
a damped dynamic pulsation absorber with two degrees of 
freedom. The principles derived from the mathematics of the 
windkessel may be summarized:

1. The intracranial pressure pulse is a standing wave in the 
craniospinal cavity that is excited by the arterial pulse.

2. The cerebral windkessel is a pulsation absorber oscillat-
ing at anti-resonance. The extracapillary space absorbs 
the pulsations from the intracapillary space. 

3. The amplitude and the phase of the ICP pulse varies 
with the heart rate, the inertia, the elastance, and the 
damping of the intracranial pulse, in accordance with 
the mathematical description of a pulsation absorber.

4. The normal state of intracranial dynamics is anti-reso-
nance at the fundamental frequency of the heart rate. 
This represents synchrony between the ICP wave and 
the arterial pulse. In the frequency domain, there is a 
notch centered at the heart rate in the arterial-ICP am-
plitude transfer function and a small phase angle lead, 
which is probably the consequence of high inertance 
necessary to optimize the effectiveness of the damped 
windkessel.

5. Anti-resonance, which is minimal amplitude response, 
is accomplished by the transposition of the arterial pulse 
through the CSF to the cerebral veins (the CSF-venous 
pump), which diverts the arterial pulse and protects the 
cerebral microvasculature from arterial pulsatility. 



Volume 2019  |   Issue 3 |   Page 32

The Cerebral Windkessel as a Dynamic Pulsation Absorber

5. the quarter cycle phase lead of CSF flow in syrinxes 
measured by flow MRI [1,32]. (A syrinx is an elastic ca-
pacitor, and flow leads pressure by a quarter cycle when 
elastic reactance greatly exceeds inertial reactance.)

6. the quarter cycle phase lag in brain expansion measured 
by flow MRI [3]. (At resonance, volume displacement 
in an oscillator lags pressure and flow by a quarter cycle).

7. the windkessel notch is observed in the frequency do-
main by transfer function analysis of the ABP and the 
ICP, and windkessel theory predicts with reasonable ac-
curacy the location of the resonance peaks that form 
the walls of the notch. [24-28] (In the frequency do-
main, dynamic pulsation absorbers are characterized 
by an anti-resonant notch at the central frequency with 
resonance peaks associated with phase transitions above 
and below the notch. The location resonance peaks can 
be predicted by the mathematical description of an un-
damped pulsation absorber.) 

8. the normal phase lead of ICP with respect to ABP 
[1,6,11-14]. (With damping, the windkessel optimal 
pulsation absorption requires an inertial bias in the re-
actance, which causes a positive impedance phase and a 
positive phase transfer function.) 

9. the phase lag of the ICP pulse associated with increas-
ing ICP and intracranial elastance [11,14]. (Increasing 
ICP causes increased intracranial elastance, which shifts 
impedance phase to negative.)

10. the clinical presentation of NPH with gait apraxia 
and urinary incontinence, which is not routinely seen 
with other types of communicating hydrocephalus that 
caused by CSF space obstruction [45]. (Low of resis-
tance in the CSF pathways, which characterizes NPH, 
causes high elastic strain on the windkessel pulsation 
absorber, which entails stress on periventricular brain 
tissue through which tracts mediating gait and urinary 
continence run.)

11.  the occasional effectiveness of ETV in communicating 
hydrocephalus [46]. (Hydrocephalus is characterized by 
increased intracranial elastance, and ETV lowers elas-
tance by connecting CSF spaces and improving compli-
ance.)

Clinical impairment of the cerebral windkessel
Our emerging understanding of windkessel dynamics raises 

two obvious questions: what role does the windkessel dys-
function play in disorders of intracranial dynamics, such as 
hydrocephalus, stroke, head injury, etc.? And, if windkessel 
dysfunction is relevant to clinical practice, how can normal 
windkessel dynamics be restored?

The detailed discussion of windkessel dynamics in hydro-
cephalus and other disorders is beyond the scope of this paper. 
I do note that windkessel impairment has been documented 
empirically in experimental hydrocephalus [27], experimental 

intracranial hypertension [24], and in normal pressure hydro-
cephalus [26]. 

It seems likely that windkessel dysfunction plays a role in 
fulminant brain edema, such as can be encountered during 
craniotomy for brain swelling or aneurysm rupture. Severe 
impairment of the windkessel would, in theory, cause almost 
instantaneous capillary disruption and fulminant edema.

The role of windkessel dysfunction in the pathogenesis of 
hydrocephalus is of particular interest, because free motion of 
CSF is essential to windkessel function. Obstruction of the 
CSF spaces ‘glues’ the intracapillary spaces and the extracapil-
lary spaces (the absorber) together, disabling the windkessel and 
threatening capillary integrity. Ventricular dilation, notably, 
serves to mitigate windkessel dysfunction, because it increases 
the volume of CSF available for coupling of arterial to venous 
pulsations. In this sense, ventricular dilation is an adaptation to 
hydrocephalus.

Shunting also alters the windkessel. Favorably, it provides 
decreased resistance to CSF pulsations and decreased elastance, 
both of which would tend to restore windkessel function dis-
abled by obstruction to CSF pulsatility. Unfavorably, shunts 
drain CSF and reduce ventricular size, which diminishes the 
volume of CSF available for arteriovenous coupling and would 
tend to leave the patient dependent on the shunt for proper 
windkessel function. 

Windkessel theory also provides a new perspective on 
the perplexing effectiveness of endoscopic third ventricu-
locisternostomy (ETV) in some patients with communicating 
hydrocephalus [46]. Although by traditional theory ETV should 
be of no value in hydrocephalus caused by obstruction to CSF 
flow distal the basal cisterns, windkessel theory suggests that 
hydrocephalus entails an impairment of the cerebral windkes-
sel caused by an excess of elastance and resistance in the CSF 
pathways. Enlarging the communication between the ventricu-
lar system and the subarachnoid space connects the spaces and 
reduces the elastance and the resistance of the CSF pathways, 
which in some patients may be sufficient to restore windkessel 
function. 

The relevance of the windkessel to the pathogenesis and 
management of hydrocephalus is of great interest and suggests 
several promising avenues of research.

Therapeutic implications of windkessel theory
How can impairment of the windkessel be treated? This ques-

tion has not been addressed experimentally, although several 
theoretical considerations are of interest. Normal windkessel 
function represents a balance of heart rate, inertia, elastance and 
resistance. The balance is expressed conveniently in the equa-
tion for impedance phase:
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where θ  is the impedance phase, ω is heart rate, mEC is the 
mass of the ICP pulse, kEC is the intracranial elastance, and 
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r  is the resistance/damping in the cranium. mECω  is inertial 
reactance, and kEC

ω
is elastic reactance. For normal windkessel function, inertial 
reactance should balance elastic reactance, so that θ  is (near) 
zero. 

Further insight may be gained by considering the impedance 
angle ECθ  expressed in terms of the frequency ratio between 
the heart rate ω  and the natural frequency of oscillation of the 
extracapillary space ECω :
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Most disorders of intracranial dynamics are caused by an 
excess of elastic reactance

 kEC
ω

 

in the extracapillary space, due to intracranial mass, brain 
swelling or stiffness. The effect of increased elastance kEC on 
the natural frequency of the extracapillary space (essentially the 
cranial contents) is given by 

k
mEC
EC

EC

ω = 

An increase in kEC will increase the natural frequency ECω of 
the cranium, diminish the frequency ratio 

EC

ω
ω

and will shift the impedance angle to a more negative (less 
positive) number. This tends to disable the windkessel, ablate 
the windkessel notch, and lead to cerebral edema and loss of 
capillary integrity. Ablation of the notch with phase lag associ-
ated with increased ICP has been observed experimentally. [14] 
[figure 1] 

Restoration of the balance between inertial and elastic 
reactance could be accomplished in several ways: decreasing 
elastance ( kEC ), increasing inertia (mEC ), increasing heart rate 
ω , or increasing resistance cEC .

Decreasing elastance is already standard therapy (e.g. removal 
of mass lesions, osmotic diuresis for edema, CSF diversion, 
decompressive craniectomy). Increasing inertia would entail 
increasing the mass of the ICP pulse, for example by increas-
ing the left ventricular stroke volume. Increasing resistance 

would risk impairing the windkessel more severely by effec-
tively clamping the intra-and extracapillary spaces together and 
impairing the absorber mechanism. 

Of particular interest is therapeutic alteration of the heart 
rate (ω ) to restore windkessel function. Both inertial reactance 
and elastic reactance are functions of heart rate, and iatrogenic 
increase in heart rate could restore windkessel function in the 
setting of an intractable increase in intracranial elastance (e.g 
intractable brain swelling). This observation is strictly theo-
retical; it is not clear what magnitude of tachycardia would be 
needed to restore the windkessel. Perhaps the necessary tachy-
cardia would be beyond physiological parameters. Despite these 
ambiguities, it is noteworthy that windkessel theory suggests 
that windkessel dysfunction due to any imbalance of intracra-
nial reactance, no matter how severe, could be corrected with 
appropriate manipulation of heart rate. 

CONCLUSION
The heartbeat is a vibration, and efficient and smooth cap-

illary blood flow is a vibration problem. Resonant arterial 
perfusion is necessary for efficient cerebral blood flow, and 
anti-resonant capillary perfusion is necessary for safe cerebral 
blood flow. This seems to entail mutually incompatible dynam-
ics. This impasse is solved by the cerebral windkessel. 

Despite its anatomical and mathematical complexity, the 
windkessel is in principle simple and elegant. The cerebral 
windkessel has analogues in mechanical engineering (a dynamic 
vibration absorber), electrical engineering (a wavetrap circuit), 
acoustic engineering (a cavity resonator) and systems analysis (a 
band stop filter). The windkessel uses resonant vascular pulsa-
tions to accomplish anti-resonant capillary wall motion. The 
CSF-venous pump, which is essential to normal function of 
the cerebral windkessel, is a pulsation absorber. Resonant vascu-
lar pulsations and anti-resonant capillary motion both depend 
critically on a balance of intracranial inertia, elastance, damp-
ing and heart rate. Windkessel dysfunction causes impairment 
of cerebral blood flow, loss of capillary integrity, and cerebral 
edema, which may in turn result in markedly increased intra-
cranial elastance and a cascade of windkessel impairment. 

Adjustment of heart rate or other parameters on which the 
windkessel depends may restore normal windkessel function. 
Restoration of windkessel function is possible, at least in theory, 
with any derangement of intracranial dynamics.

Aided by the principles of reverse engineering, we should 
explore the theoretical, physical, and physiological implications 
of this elegant system of pulsation absorption in the cranium. 
The difficult process of understanding the cerebral windkessel 
may provide new and counterintuitive insight into disorders of 
intracranial dynamics.
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