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Abstract

In computer search optimization theory, active information is a measurement of a search algorithm’s internal information as it relates
to its problem space. While it has been previously applied to evolutionary search algorithms on computers, it has not been applied
yet to biological systems. Active information can be very useful in di�erentiating between mutational adaptations which are based
on internally-coded information and thosewhich are the results of happenstance. However, biological systems presentmany practical
problems regarding measuring active information which are not present in digital systems. This paper describes active information,
how it can be used in biology, and how some of these problems can be overcome in speci�c cases.

Cite as: Bartlett, J (2020) Measuring Active Information in Biological Systems. BIO-Complexity 2020 (2):1-11. doi:10.5048/BIO-C.2020.2.

Editor: Robert J. Marks II

Received: October 9, 2019; Accepted: March 14, 2020; Published: April 6, 2020

Copyright: © 2020 Bartlett, Jonathan. This open-access article is published under the terms of the Creative Commons Attribution License, which
permits free distribution and reuse in derivative works provided the original author(s) and source are credited.

Notes: A Critique of this paper, when available, will be assigned doi:10.5048/BIO-C.2020.2.c.

*Email: jonathan.bartlett@blythinstitute.org

INTRODUCTION
Biological evolution operates in at least two well-known
modes—either semi-directionalized, where the outputs of
evolution are correlated with the selection pressures the
organisms face [1], or as a non-directionalized drift, as
neutral theory describes [2]. Historically, research into
evolution has focused on the ability of natural selection
to keep beneficial mutants in the population, and not
how they originate to begin with.

Recent work in evolutionary theory, especially in evo-
lutionary developmental biology, has led to the realization
that the inputs to evolution (i.e. the evolutionary paths
that organisms are endogenously predisposed to take and
the existing developmental pathways that canalize these
changes into useful phenotypes) are just as important as
the processes of mutation and selection themselves. In
the extended evolutionary synthesis, such predispositions
are given first-class causal status [3].

Over the last several decades, several important ex-
periments have shown that, not only do developmental
pathways canalize evolution, but also the actual mechan-
ics of mutation may be manipulated to some degree by
cellular machinery. As an example, in the vertebrate
adaptive immune system, when the system is confronted
with an unknown antigen, invokes a process known as
somatic hypermutation to generate mutations at a higher
rate which have a higher than usual chance of success.
While this process is partially stochastic, it is also tightly

focused, so that it only creates mutations in the correct
half of the correct gene where mutations are most likely
to be beneficial, and mutations in other regions do not
occur [4, 5].

There are a number of other systems in which the
DNA and cellular machinery provide directionality for
mutational processes, instead of the directionality be-
ing supplied by selection alone [6–8]. Caporale suggests
that these might not be isolated incidents, but rather
systemic features of the genome [9, 10]. Elsewhere, the
present author groups these systems under the label
“evolutionary teleonomy” to note that the directional-
ity of the evolutionary process is partially programmed
by the evolving organism’s own genes and cellular ma-
chinery [11]. Therefore, a methodology is needed for
detecting and measuring the degree to which mutations
are based on endogenous cellular systems rather than on
happenstance and/or copying failures in DNA replication
processes.

Such measurements would allow for the characteri-
zation of genomes according to which evolutionary pro-
cesses they are endogenously predisposed to accomplish.
Such characterizations can then lead to improved un-
derstanding of the evolutionary potentials of different
organisms. These mutational characterizations can also
be used to match organisms for industrial processes such
as waste management for which evolution is part of the
solution. Finally, it could aid in drug development by
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characterizing which types of selection pressures the or-
ganism is predisposed to evolve against.

In order to characterize the disposition of evolutionary
machinery to selection pressures, it is best to model
evolution under selection as an evolutionary search for
a genetic program which can relieve selection pressures.
This allows the application of analysis tools which are
utilized in the study of search algorithms in computer
science (including genetic algorithms) to evolution. The
present paper will explore one such tool in-depth, active
information.

AN ACTIVE INFORMATION TUTORIAL
In search optimization theory, one intriguing discovery
known as the “No Free Lunch” theorem, states that all
search algorithms are equally good (or, depending on
how you look at it, equally bad) at finding valid solutions
to search problems when averaged over all possible search
environments [12]. In other words, there is no search
algorithm that is universally better than any other in
all circumstances. However, one can construct a search
algorithm which is better than another one if the person
knows something about the search space.

For instance, let’s assume that we have 100 index
cards, each with a distinct number written on each one,
laying face down in a row on the table. Let’s say we
are looking for a card with the number 12 written on
it. Without knowing anything about the order that the
cards are in, any given method of searching is equivalent—
including just picking cards up at random. If, however,
we know something about the order of the cards, then
we can pick a search algorithm that matches the way
that the cards are ordered.

Let’s say that the cards are in numerical order, but I
don’t know which numbers have been used. In that case,
I want to pick the card in the middle, and then choose
the first half of the cards if the number is greater than
12, and the second half of the cards if the number is less
than 12. Then, I can repeat that procedure until I find
the number 12. The maximum number of steps to find
that card will be log2(100), or about 7 attempts.

However, if the cards are separated out so that
the odd-numbered cards are on the left and the even-
numbered cards are on the right, then that method of
searching won’t work. Instead, I will simply have to
search through the cards on the right-hand side of the
line to find the card with the number 12. Here, the
maximum number of steps to find the card will be 50.

So, as is evident, in order to have a search that is more
efficient than a random search through the cards, the
search algorithm needs to have some information about
the order the cards are in. Active information quantifies
the amount of information that a search algorithm has
about the pattern of the areas to be searched [13].

Active information quantifies the amount of informa-
tion that a search contains by comparing the effectiveness
of the search on the search space to the effectiveness of
a blind, random search. The blind, random search is
chosen as a benchmark because (a) it has the same per-
formance characteristics no matter what the search space,
and (b) it performs equally well as all other search mech-
anisms when averaged over all possible search problems.
Therefore, a purely randomized search is an effective
benchmark to measure a search algorithm.

Active information is measured by comparing the
probability of success of a single query of a given search
to the probability of success of a single query of a pure
random search after both probabilities have been con-
verted into bits. Probabilities can be converted into
bits by take the negative base 2 log of the probability.
So, a probability of 1

16 is equivalent to 4 bits, because
− log2( 1

16 ) = 4. Bits are often used in information cal-
culations because it converts probabilities, which can be
unwieldy to deal with, into values which can be more
naturally added and subtracted from each other.

The probability (in bits) of the random search is
termed IΩ and the probability (in bits) of the search un-
der analysis is given as IS . Therefore, active information
(I+) is given as:

I+ = IΩ − IS (1)
Using the raw probabilities, the equation looks like

this:

I+ = − log2 PΩ + log2 PS (2)
This can be further simplified to:

I+ = log2

(
PS

PΩ

)
(3)

As an example, let’s say that a random search of
my card deck yielded success with an average success
of 1

100 probability, and a particular search algorithm
yielded success with 1

20 probability. To calculate the
active information in this search we would convert each
one into bits.

IΩ = − log2

(
1

100

)
≈ 6.64

IS = − log2

(
1
20

)
≈ 4.32

I+ = IΩ − IS

= 6.64− 4.32
= 2.32 bits

Therefore, we would say that the search algorithm
contributed 2.32 bits to the search.
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Figure 1: A Visual Representation of Active Information.
doi:10.5048/BIO-C.2020.2.f1

A search algorithm can also contribute negative active
information. This means that the search is actually worse
than a pure random search. Most search algorithms, if
they are not tailored to the pattern of data in the search
space, will yield an active information result nearing zero.
Having a search algorithm that yields significant positive
active information indicates that the search algorithm
is tailored for the search space. In biological terms, we
can say that if an organism exhibits a large amount of
positive active information, then there is evidence that
there is an internal mechanism geared towards generating
solutions of this type.1

Figure 1 gives a visual representation for what pos-
itive and negative active information do with a search
space.

For evolution, this means that we can measure the
degree to which an organism is teleonomically aligned
with an evolutionary problem by measuring the amount
of active information the organism contributes to its
own success responding to such problems. If an organism
shows large amounts of active information for a particular
problem, we can be confident that there is a mechanism
of interest for generating that evolutionary pathway. In
other words, the evolutionary result is likely directed
by the organism’s physiology, and not just a product
of happenstance. Caporale calls such evolutionary di-
rectionality the implicit genome [10]. I have termed
the internally coded programs that direct this process
evolutionary teleonomy [11].

CLARIFICATIONS
A few items in the foregoing discussion need some clari-
fication.

1More technically, active information indicates an alignment
of internal mechanisms and external environment. While we are
taking this as evidence that the organism contains information
about the environment, this could be accomplished by the en-
vironment containing information about the organism. This is
assumed to not be the case, since it is generally assumed that
environments do not contain information about organisms.

Meanings of the Word Endogenous Information
One particular point of confusion with applying active
information to biology is that both share a term, en-
dogenous information, but have different meanings for
it. In biology, endogenous information refers to useful
information carried within the genome. Müller [14] de-
fines endogenous information in biology as indicating
primarily information-bearing DNA. He refers to “three
sources of endogenous information, (1) the genetic in-
formation encoded in the nucleus and the mitochondria,
(2) maternal cytoplasmic information which is directly
(always?) derived from genetic information, (3) epige-
netic information acquired by the interaction of the cells.”
This meaning can be seen in papers such as Quarton et
al [15], which refers to the “operation of microRNAs as
mediators of endogenous information and regulators of
gene expression in synthetic biology.”

Active information, however, has its origins in com-
puter search theory. In information theory, the term
“information” can actually refer to either (a) things that
are explicitly coded for (i.e., this file contains a megabyte
of information that tells you about X, Y, and Z), or
the amount of entropy available in the system (i.e., this
disk drive has the capacity to hold a gigabyte of storage).
In active information, the term “information” actually
refers to both. Endogenous and exogenous information
refers to the entropy of the system before and after ap-
plying an algorithm to the search. Active information
is the difference, and tells you how much information is
contained in the algorithm itself.

However, since, in the case of organisms, the infor-
mation about the organism would be stored in DNA or
a similar organismal mechanism, the proper biological
term for this is endogenous information. In order to
bridge this problem, when the paper refers to biological
endogenous information, this paper will expand the term
to say endogenously-coded information. The bare term
endogenous information will refer to the word from active
information.

What Is Being Measured?
Measuring active information is measuring the infor-
mation that the genome (as it presently stands) has
about likely beneficial future configurations. Some have
misinterpreted active information to mean that we are
measuring information being added to the genome. One
criticism of this measurement is that most organismal
adaptation which helps with current selection pressures
actually comes at a long-term cost to the organism [16],
so therefore we would be incorrect to use selection and
benefits to selection to measure active information.

This is an invalid view of active information. Active
information does not claim that the resulting system
contains more or less information than the system prior to
mutation. Neither of those options are excluded using the
active information calculation. What active information
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measures is the alignment of the genome itself to the
problem of finding viable genetic solutions to selection
pressures.

This is wholly compatible with Behe’s “First Rule
of Adaptive Evolution,” which states that evolution will
“break or blunt any functional coded element whose loss
would yield a net fitness gain.” [16] The question that
is posed by active information is a separate one. Does
the genome contain information about what changes are
likely to yield benefit? It may be that the most likely
way to yield benefit is to blunt or break some particular
system. If active information is present, then the blunting
and breaking will be measurably tilted towards blunting
and breaking systems that are likely to yield selection
benefit by doing so.

The goal of active information is not to be a universal
quantification of all aspects of information in biology, but
rather to assess the narrow question of the information
that cells contain that assist in their own evolution.

Additionally, it should be pointed out that the mea-
surement is a valid measurement whether or not any
active information is found. That is, if cells do not con-
tain information that assist their evolution, then active
information measurements will yield near-zero or nega-
tive values. If cells only contain information that assist
their evolution in specific ways, active information mea-
surements will be able to determine which ways the cell
contains information for.

PROBLEMS MEASURING ACTIVE INFOR-
MATION IN BIOLOGICAL SYSTEMS
While measuring active information is fairly straightfor-
ward in digital systems, it is decidedly much harder in
living systems. There are several problems that make
measuring active information more difficult in living sys-
tems.

First, in living systems, determining a valid set of
target sequences that would correspond to a biologically-
meaningful response to a selection pressure is difficult.
This is because life optimizes for a number of variables,
both short-term and long-term. Therefore, it is difficult
to know what a solution necessarily looks like. Is a short-
term benefit with long-term detriment a solution? It is
not always possible to know, so there will inevitably be
some ambiguity to the question of the fitness of a solution.
However, this is not any more ambiguous than other
questions of measuring fitness of organisms generally.

Second, and more significantly, there is the question
of finding IΩ. This is the biggest technical challenge,
because living systems cannot be turned off without
unforeseen repercussions. Therefore, it is difficult to find
out how effective an organism would have been without
the specificity of the mutation system. Ideally, we would
be able to experimentally create a set of mutations using
a computerized random algorithm and test the organisms
in order to determine a solid value for IΩ.

With digital algorithms and digital organisms, each
aspect of the evolutionary search can be taken apart
and evaluated. Each digital organism can be carefully
modified and tracked (see Ewert et al [17] for an exam-
ple of this). With living organisms, this is a practical
impossibility.

Therefore, the remainder of this paper will focus on
several different techniques to overcome this problem in
living systems.

MEASURING ACTIVE INFORMATION IN
SOMATIC HYPERMUTATION
The most straightforward mutational system for which
to measure active information in living systems is the
somatic hypermutation (SMH) process by which the
vertebrate immune system adapts to new antigens to
generate new immunoglobulins.2 This system increases
the mutation rate in order to better fit the immunoglob-
ulin to the antigen. The question is then, “does the
cellular system contribute information to the search for
the solution, and, if so, how much?”

While the somatic hypermutation system has been
correctly characterized as a “shotgun approach” due to
its stochastic nature, it is only a shotgun approach to
a very restricted range of base pairs, and in a limited
phase of B-cell development. As mentioned previously,
the actual mutations are limited to a single half of a
single gene where mutations are likely to be beneficial.

Immunoglobulins have a “constant region” (C) and
a “complementary-determining region” (CDR). The con-
stant region is what signals to the immune system that an
antigen is present. Thus, mutations in the constant re-
gion are unlikely to be helpful, as they would merely
degrade the immune response. The complementary-
determining region is the region that attaches to the
antigen. Thus, for an antigen that the immune sys-
tem has not seen before, changes to the complementary-
determining region are needed in order to get a correct
fit to the new antigen. And, as has been shown, this
is indeed where nearly all of the mutations take place
[4, 5].

The question is, how do we quantify how much in-
formation the cell is providing to its mutational process
through this range limitation?

Several facts will help us with the computation:

• The somatic hypermutation process is usually suc-
cessful. Therefore, we can focus on successes as the
norm without worrying about cherry-picking.

• The somatic hypermutation process usually suc-
ceeds by only mutating a very small number of
base pairs (usually about three). This means that
this process probably yields the smallest mutation

2Note that the biological literature abbreviates somatic hy-
permutation as both SMH and SHM, depending on the source.

Volume 2020 | Issue 2 | Page 4



Measuring Active Information in Biological Systems

which will perform the task. Because it is the small-
est size of mutation, this means that we can use
the probability of this particular mutation to stand
in as an estimate for the probability of achieving
success generally.3 Therefore, we don’t need to
know the specifics about all possible mutations
that would yield a beneficial result—we just need
a reasonable estimate of the smallest workable mu-
tation.

• The somatic hypermutation process operates by
restricting the physical range where possible mu-
tations can occur. This makes it easy to calculate
IS .

The main detail we are concerned with here is the
localization of the mutations. During somatic hypermuta-
tion, the mutation rate increases dramatically, but only
within a small region of the genome. The mutation rate
increases for the immunoglobulin gene. Not only that,
however, the mutations are focused on the CDR (which
attaches to the antigen) and are almost non-existent
in the C region (which is involved in determining the
immune system response).

In other words, only the gene most likely to have a
beneficial effect is targeted, and then, only the part of
the gene which would provide benefit is targeted. The
hypermutation targeting is limited to 2 kilobases starting
at the transcription start site [5]. The effective range

3To see why this one probability can stand in for the others,
imagine that I have a combination locks with five dials (each
dial has the digits 0 − −9 as options). Two codes will open
the safe—one of them is a a three-digit code (but you don’t
know which of the digits it contains) and the other uses all
five digits. The chance of hitting the right combination on the
smaller set is a sufficiently accurate approximation for getting
either one right. The relevant probability for both combinations
is 1

1000 + 1
100000 ≈ 1

990 as opposed to 1
1000 for just the smaller

combination. Even if there were 20 working 5-digit combinations,
that would still be a probability of 1

833 . Maintaining the same
probability as the number of d-sized digits increase will require
multiplying the number of successful trials by dn, where n is
the number of digits to add. So, for lock with ten positions, if
there is one combination that works for a 3-digit combination,
there would need to be one hundred combinations to have the
same probability on a 5-digit lock. In short, expanding the
number of digits in an n-position lock by d digits would only
be compensated by multiplying the number of solutions by nd.
Therefore, larger-sized combinations would have to be absolutely
filled with working combinations to make a significant impact on
the probability. Biologically, this does not appear to be the case
[18]. It is also possible that there could be multiple combinations
of the same length. However, again, unless the space were
replete with such combinations, it would make little impact on
the probability—especially since we are, in the end, measuring
it with an order-of-magnitude measuring system (bits). As the
search space increases, the impact of these possibilities becomes
exponentially smaller. With these considerations in mind, we
can say that, from a practical perspective, the smallest valid
combination can serve as an approximation for the probability
of all possible combinations.

is much shorter than that, as the mutations follow an
exponential decay curve, with mutations occurring near
the 2kb end of the range only happening less than 1% of
the time.

Note that the mistargeting of this process can end in
lymphomas, indicating that its precision is necessary to
the health of the organism [19].

Therefore, since the mutation space is reduced to the
same area which has likely beneficial targets, we can
estimate the amount of active information this target
space reduction brings. To start with, let’s look at the
case where only one mutation is needed to be successful.

Since we are only looking the target space (which
base pairs to mutate but not what they should mutate
into), we need only look at the relative sizes of the
whole genome and the target space. The whole genome
is roughly 3,000,000,000 base pairs, and the somatic
hypermutation target is roughly 2,000 base pairs. Since
we know biologically that the somatic hypermutation
target is roughly the same location as the actual necessary
mutations needed, this entire space reduction can be
considered to be active information.

Because we are aware of the biology, we can assume
that the reduction of mutation space is correct. There-
fore, if the probability of finding the right base to mu-
tate within the somatic hypermutation target (PS) is

1
2,000 and the probability of finding the right base to
mutate within the entire genome (PΩ) is 1

3,000,000,000
then the active information (I+) for this reduction is
log2

(
3,000,000,000

2,000

)
, or approximately 20.5 bits.

GOING BEYOND SMH
The methodology described for the somatic hypermuta-
tion system can be generalized to any mutational system
for which the following are reasonable parameters:

• The cell reduces the mutation space to an area that
still fully contains (or almost fully contains) the
solution space.

• The number of mutations that are required are
small enough so that they can be reasonably
thought of as the smallest mutation to accomplish
the effect.

When this occurs, we can deduce a number of basic
formulas. Within these formulas, g will be the genome
size of the organism, z will be the reduced mutational
space, and m will be the number of mutations required
for success. For the calculations, we are only concerned
with which positions are mutated, not what they are
mutated to, because we are looking at the effect of the
reduction in search space, and we are assuming that the
range of mutations at these positions are not affected by
the reduction.
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For a single required mutation for success,

IΩ = log2(g) (4)
IS = log2(z) (5)
I+ = IΩ − IS (6)
I+ = log2(g)− log2(z) (7)

If success requires multiple mutations, we can use
combination laws to determine that:

IΩ = log2

(
g!

(g −m)!m!

)
(8)

IS = log2

(
z!

(z −m)!m!

)
(9)

I+ = IΩ − IS (10)

I+ = log2

(
g!

(g −m)!m!

)
− log2

(
z!

(z −m)!m!

)
(11)

Additionally, where g is large and m is small, g!
(g−m)!

can be approximated as gm (and likewise for z). This
yields:

IΩ ≈
log2(gm)
log2(m!) = log2(gm)− log2(m!) (12)

IS ≈
log2(zm)
log2(m!) = log2(zm)− log2(m!) (13)

I+ = IΩ − IS (14)
I+ ≈ (log2(gm)− log2(m!))− (log2(zm)− log2(m!))

(15)
I+ ≈ log2(gm)− log2(m!)− log2(zm) + log2(m!) (16)
I+ ≈ log2(gm)− log2(zm) (17)
I+ ≈ m(log2(g)− log2(z)) (18)

I+ ≈ m
(

log2

(g

z

))
(19)

In the case of somatic hypermutation, the average
number of mutations needed is three. Therefore, the
process as a whole confers approximately 20.5 · 3 ≈ 61.5
bits of active information to the evolutionary search
process.4

As is apparent, there is a significant amount of active
information in the somatic hypermutation mechanism.
Likewise, as is apparent from the biochemical data, the
mechanism to implement this biological search is also
significant. This lends credence to our original claim
that significant amounts of active information indicate a
system which guides mutations to beneficial ends.

4As an example of how close the approximation of Equa-
tion 19 is to Equation 11, using Mathematica with Equation 11
we calculated the number of bits with the exact formula to be
within 0.0022 bits of the simplified approximation formula.

A GENERAL METHOD
In addition to specific models for evaluating the active
information of specific systems, it would be helpful to
establish a generalized method for performing active in-
formation experiments on living systems. Here we will
attempt to establish the general parameters needed for
such experiments, at least for single-celled organisms.
The point of this methodology is not to strictly bind
experimenters to this method, but rather to give a gen-
eral outline of the problems faced and how they can be
overcome mathematically.

What we would like is to let organisms produce their
own mutations, measure the success rate of the organ-
ism’s experiments, and then let the experimenter produce
random mutations, and measure the success rate of those
experiments.

Ideally, for producing random mutations, the experi-
menter would create a library of random edits and apply
them to organisms. However, this is not necessarily
practical. As an alternative, we are supposing that the
experimenter is introducing a mild but broad-spectrum
mutagen (or set of mutagens) which will cause muta-
tions haphazardly within the genome. The mutations
do not need to follow an exact uniform random distribu-
tion, only simply to be sufficiently broad-spectrum and
uncorrelated with fitness so as to produce a significant
sampling of mutations. Additionally, if possible, the mu-
tagen should act as directly on the DNA as possible. If it
instead merely activated mutagenic potential, then it is
difficult to distinguish between the actions of the muta-
tion system and actual randomized mutations (however,
see the section “Relative Active Information” for measur-
ing relative amounts of active information in situations
where finding an absolute IΩ is a practical impossibil-
ity). Finally, the mutagen should minimize non-genetic
stress as much as possible to prevent interference with
the solution should it be found.

Supposing an edit library or a proper mutagenic sub-
stance can be found, the next problem is that it is difficult
to disable an organism’s internal processes which create
mutations. In other words, while we can measure an
organism’s success rate for producing its own mutations,
it is very difficult to find out what the success rate for
random mutations (i.e., IΩ) is alone. Since an organism
is also mutating on its own, the successful mutations in
the population affected by the mutagen are not just those
in IΩ, but a combination of both IS and IΩ. Therefore,
we will have to develop a mathematical model to be able
to estimate what these parameters are, even though they
are mixed within our experiment.

Figure 2 provides a conceptual model of what the
issues are. In the conceptual model, Plate 1 consists of
only the mutations that the organism itself undergoes.
Therefore, using Plate 1, an accurate measurement of IS

(the probability of success using the organism’s internal
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Conceptual Model

Plate 1:  
Internal Mutations Only

Plate 2: 
Internal and Induced Mutations

Cell with no mutations
Cell with induced mutations
Cell with internal mutations
Cell with both internal and induced mutations

Figure 2: A Conceptual Model of the Experimental Method.
doi:10.5048/BIO-C.2020.2.f2

program) can be obtained. Plate 2 is where we attempt
to model and measure IΩ by introducing a mutagen to
produce random mutations. However, in Plate 2, both
random and induced mutations are occurring, sometimes
within the same individual.

Therefore, we need a way of mathematically sepa-
rating out the mutations that are happening due to
an organism’s internally-generated mutations and those
that are happening due to the experimenter’s attempt to
induce random mutations (which we will call externally-
generated mutations).

We can conceptualize the following measurements
and calculations which will allow for the measurement
of active information in such an experiment.5

NC1 and NC2 This is the total count of organisms under
study in Plate 1 or Plate 2 of the Conceptual Model.
This is determined experimentally.

UC1 and UC2 This is the total count of organisms that
were successful in Plate 1 or Plate 2. This is deter-
mined experimentally.

US1 This is the total count of organisms on Plate 1
that were successful due to internally-generated
mutations. Since internally-generated mutations
are the only ones available in Plate 1,

US1 = UC1 . (20)

G This is the average genome size for the organism.
5As a bit of an explanation of the nomenclature: M refers to

per-base-pair mutation rates, O refers to per-organism mutation
rates, U refers to the successful mutation counts (or expected
values), and P refers to the probability of success of an organism
that was mutated. For the subscripts, S refers only to the
internally-generated mutations, Ω refers only to the externally-
generated mutations, and C refers to their combination. Plate-
specific values can further be subscripted by a 1 or 2. Ω results
do not have a plate number as they are only applicable to
Plate 2.

MS This is the per-base-pair mutation rate for internally-
generated mutations for the given organism. This
is determined experimentally beforehand.

MΩ This is the per-base-pair mutation rate for
externally-generated mutations for the given organ-
ism. This is determined experimentally beforehand.
This is modeled as being independent of MS .

OS This is the per-organism mutation rate for internally-
generated mutations. This can be either given,
determined experimentally, or calculated from MS .
The calculation for OS is

OS = 1− (1−MS)G. (21)

Technically, this only applies if MS is constant
throughout the genome (an assumption not made
in this paper). However, if a calculation of MS is
itself based on this assumption already, working
backwards back to OS using the same assumptions
should be unproblematic.

OΩ This is the per-organism mutation rate for externally-
generated mutations. This is given by

OΩ = 1− (1−MΩ)G. (22)

Since these are indeed supposed to be random
mutations, the per-base pair mutation rate can be
extrapolated in this way.

PC This is the probably that, for any organism mutated
on Plate 2, that mutation was successful. In other
words, this is the probability of the success of the
combined action of both internal and external mu-
tations. Using the law of large numbers, this can
be calculated simply as

PC ≈
UC2

NC2

. (23)

PS This is the probability that, for an organism mu-
tated by internally-generated mutations, the pro-
cess yielded a successful organism. If this is not
already known, it can be determined in terms of
US1 . Indeed, since US1 ∼ B (NC1 , PS OS) where
PS OS is the probability that any particular organ-
ism will get an internally-generated mutation, then,
taking also into account that NC1 is very large and
making use of the law of large numbers, we obtain6

US1 ≈ E [US1 ] = PS ·OS ·NC1 . (24)

6This is a slight abuse of notation, as I am using the same
name for both the random variable as the individual outcome.
However, given the multiplied number of variables so far, intro-
ducing another level of nomenclature seems more confusing than
having the same name stand in for both the random variable
and the specific outcome.
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Therefore,
PS ≈

US1

OS ·NC1

. (25)

To calculate PΩ, which, as defined for active infor-
mation, is the probability of an organism hitting the
target by a random search, we will use the law of total
probability.

Essentially, we start by noting that there are two
sources of successful mutations in this experiment—Ω
(random mutations) and S (internally-generated muta-
tions). UC2 is the count of all of the successful mutations.
We will also use this term below to represent membership
in the group of successful mutations.

The probability of success of any organism in the
combined experiment (PC) can be given by

PC = Pr[UC2 |SΩ] Pr[SΩ] + Pr[UC2 |SΩ] Pr[SΩ]+
Pr[UC2 |SΩ] Pr[SΩ] + Pr[UC2 |S Ω] Pr[S Ω].

(26)

Since we are assuming that the probability of being in S
and the probability of being in Ω are independent, we
can modify this equation to read:

PC = Pr[UC2 |SΩ] Pr[S]Pr[Ω]+
Pr[UC2 |SΩ] Pr[S]Pr[Ω]+
Pr[UC2 |SΩ] Pr[S]Pr[Ω]+
Pr[UC2 |S Ω] Pr[S]Pr[Ω].

(27)

Note that we have the following identities:

Pr[UC2 |SΩ] = PS (28)
Pr[UC2 |SΩ] = PΩ (29)

Pr[S] = OS (30)
Pr[S] = 1−OS (31)
Pr[Ω] = OΩ (32)
Pr[Ω] = 1−OΩ (33)

Also note that all successes will come from mutations,
and all mutations will come from either S, Ω, or both.
Therefore,

Pr[S Ω] = 0. (34)
Using these facts, the equation becomes

PC = Pr[UC2 |SΩ] OS OΩ+PΩ (1−OS)OΩ+PS OS(1−OΩ)
(35)

The probability we are wanting to know is PΩ, so we can
rearrange to solve for this.

PΩ = PC − PS OS(1−OΩ)− Pr[UC2 |SΩ] OS OΩ

OΩ(1−OS) (36)

The probability that we don’t know is Pr[UC2 |SΩ]. This
is essentially an error term relating to the organisms that
were affected by both internal and external processes.

We don’t have a clean way of separating out the effects
of internal and external processes in this term. However,
since it is a probability, it has to be between 0 and 1, so
therefore we can deduce a minimum and maximum PΩ
based on thos two values. This yields

PΩmax = PC − PS OS(1−OΩ)
OΩ(1−OS) (37)

PΩmin = PC − PS OS(1−OΩ)−OS OΩ

OΩ(1−OS) (38)

We can then use our Active Information equation (Equa-
tion 2) to deduce that

log2 PS − log2 PΩmin ≤ I+ ≤ log2 PS − log2 PΩmax (39)

While that is sufficient for the standard case, there is
also the possibility that PΩ is too small to actually hit
by experimental random mutation. This would lead to
an I+ of infinity.

In order to counteract that case, let us define a “con-
figurational probability.” This is the probability, based
on what we know about the mutation rate and the num-
ber of mutations needed to achieve the smallest known
successful mutation, that the mutation will be found by
chance. Essentially, if the chance rate winds up being
below our experimental detection threshold, this allows
us to simulate it mathematically. With G as the genome
size, and L being the smallest known successful mutation
(and taking into account Footnote 3), we can calculate
the configurational probability as

Pconfig =
(

G
L

)−1 ( 1
3
)L (

G
L

)
(MS)L (1−MS)G−L

OS
. (40)

This equation combines (a) the chances of mutations
hitting the correct mutable locations for the success, (b)
the chance of getting the correct new base pair for each
of those locations, (c) the chances of having that many
mutations within a single cell, and (d) the chance of a
particular organism having any mutations (since the P
set of values is specifically only for organisms for which
some mutation occurred). We used here the probability
of getting exactly the right number of mutations. One
could argue for using the probability of at least the right
number of mutations instead.7 This also assumes that
the experiment is setup so that so that the time frame
for cellular reproduction is limited to a single generation.

As you can see, even in the face of difficult experi-
mental factors, it can sometimes be possible to develop
calculations for measuring the degree to which mutational

7Note that even though
(

G
L

)−1 and
(

G
L

)
cancel out, they were

both left in the equation in order to better identify how this was
being calculated, especially since (c) could be changed from an
exact count to an “at least” count, and this facilitates modifying
the equation as such.
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activity is aligned with an organism’s benefit. Unfortu-
nately, the parameters of these calculations indicate that
in order for this particular setup to work well (i.e., gener-
ate an I+ within a sufficiently tight range in Inequality 39
to be meaningful) are fairly narrow.

There are several important considerations to keep
in mind when using this procedure in measuring active
information. First of all, since the goal is measuring the
active information of the mutational mechanisms, it is
important to note that if an adaptation is a multistep
process, each selectable step must be independently evalu-
ated. Without this consideration, the active information
being measured may be that of the selection process
rather than the mutation process.

Second, the organism should have a mutation rate
and genome size which are low enough to allow the intro-
duction of mutations without having too many organisms
containing mutations from both processes, since, as is
evident above, they cause the window of PΩ values to be
too wide to be worthwhile.

Finally, some organisms have extremely high muta-
tion rates under selection. Under normal conditions, the
mutation rate per base pair of single-celled DNA-based
organisms is on the order of 10−11 [20]. Under certain
selective conditions, however, the mutation rate may
skyrocket by several orders of magnitude [21]. Rates
remotely approaching (or above) G−1 are too high to
perform this particular experiment directly, since, as OS

approaches 1, the ability to determine whether any suc-
cess was from internal or external processes approaches
zero.

RELATIVE ACTIVE INFORMATION
Active information is, in actuality, a relative measure-
ment, similar to decibels. In engineering, a decibel refers
to the relative loudness of a noise compared to a refer-
ence point. The reference point itself can vary—decibels
simply measure the loudness relative to this point.

However, sometimes decibels are used alone without
specifying a reference point. In these cases, the deci-
bel is measured against a standard reference point. For
audio, a decibel, when the reference point is unspeci-
fied, is measured against a sound pressure level of 20
micropascals.

So far, we have been measure active information
against the standard of the genome undergoing happen-
stance (i.e., random) mutations. However, we can use
other reference points as well to measure a relative active
information against those reference points.

Richard Lenski has been performing a long-term evo-
lution experiment that has stretched over 60,000 gen-
erations of E. coli evolution [22]. In this experiment,
Lenski’s team grows about 6.7 generations per day, and
takes a 1% sample each day to transfer to a new flask.

During this experiment, Lenski’s team detected a rare
mutation of E. coli which caused it to be able to utilize
citrate as a carbon source after approximately 31,500
generations [23]. The important potentiating mutation,
however, occurred at approximately generation 20,000.
Prior to this generation, attempts to re-evolve the gene
by similar means have failed, but, after this generation,
it evolves quite easily. Therefore, we will focus on the
potentiating mutations that occur at generation 20,000.

In later experiments, a different lab showed that
the same series of mutations can occur in as few as 12
generations if the organism is under strong selection [24].
Hofwegen et al [24] suggested that their results were due
to an increase in mutation rate because their colony was
under selection. However, in order for that to be the
case, the number of mutations that each individual would
have to undergo would be phenomenal. Thus, it is likely
that, as well as an increase in mutation rate, a targeting
process also occurred that made the citrate mutation
more likely.

Now, we cannot know if the base citrate mutation
obtained by Lenski is due to random mutation, or if
there is an deeper underlying logic to the mutation which
focuses it on mutations which, even if not selective, at
least are more likely to be sensical. Such a hedge-betting
strategy would likely be stochastic to some extent, but
would not necessarily be random. In other words, even
if the specific site selected is not based on function, the
specific list of mutable sites may be skewed towards
function [25, 26].

However, because active information is a relative
measurement, we don’t have to know whether or not this
is true. What we can do is measure the active information
of the mutation under selection compared to base rate
of the mutation not under selection. This will give us
the amount of active information that the organism has
towards solving this problem over and above what is
present in the basal rate.

Lenski [27] notes that, after 20,000 generations, each
of his twelve populations have encountered between 3·108

and 1.5 · 109 mutations. Therefore, we will use 1010 as
the estimate of the number of mutational events that
happened across all twelve populations combined in order
to get the potentiating mutation.

Hofwegen et al [24] does not provide a number of
mutational events or even a mutation rate, but we can
estimate from the number of generations tested. It is un-
clear what the mutation rate was, but the population per
generation was probably equivalent due to their attempt
to replicate the Lenski experiment in other aspects of
their experimentation. Since the mutation rate is not
given, it is possible that there was an increased mutation
rate due to hypermutating cells. Foster [21] says that
hypermutable cells can have a 200-fold mutation rate,
but that hypermutators represent only about 1% of cells
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under selection. Therefore, we can estimate that be-
ing under selection will triple the number of mutational
events.

If the average per-generation mutational events in
Lenski is 5·104, then the per-generation mutational events
under selection will be approximately 1.5 ·105. Therefore,
across 12 generations, we will have approximately 1.8·106

mutational events, out of which we will get a mutation.
Therefore, we can calculate the active information

that the cell has about the selection in such cases as:

I+ = IΩ − IS

= − log2
(
1010)

+ log2
(
1.8 · 106)

= 33.2− 20.8
= 12.4

Therefore, E. coli contributes approximately 12.4
additional bits of information towards the search for
the Cit+ mutation when under selection. This number
is relative to the ordinary predisposition of E. coli to
produce this mutation when not under selection, which
has not been determined.

CONCLUSION
At its core, active information is a quantitative tool for
understanding evolution and its potentials. In general,
the purpose of calculating active information is to see
if the cell has mutational mechanisms geared to solving
the given evolutionary problem presented to it. If the
active information in a process is significantly above zero,
then it is likely that the cell has significant resources
devoted to solving that evolutionary problem or class of
evolutionary problems. If the active information is near
zero or even negative, then that indicates that the cell
does not have resources dedicated to solving that sort of
biological problem.

Knowing whether or not an organism has active in-
formation targeting a particular problem or class of prob-
lems can help in fundamental research by identifying
whether or not we should be searching for a teleonomic
mutational system for generating such mutations. It can
take considerable lab work to detect and analyze the
workings of mutational machinery. Active information
can therefore be used to establish the likelihood that
there is a mechanism worth finding prior to investigation.
If an interesting mutation is found but active information
is near or below zero, then it was likely to be merely
a fortuitous occurrence. On the other hand, if active
information is significantly positive, this provides the
justification for expending the cost needed to search for
a corresponding mechanism. Additionally, establishing
patterns of problems for which organisms have active
information can be identified, which would be good first
steps to finding the mechanisms responsible.

Active information can also be important for bio-
engineering. Knowing the types of problems different
organisms are geared to solve will help in determining
the likely future evolutionary paths of organisms. This
can aid in selecting organisms for industrial problems
(such as medicine and waste management) which rely on
an organism’s mutational abilities.
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