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Abstract

In the last three decades, several measures of complexity have been proposed. Up to this point, most of suchmeasures have only been
developed for �nite spaces. In these scenarios the baseline distribution is uniform. This makes sense because, among other things,
the uniform distribution is the measure of maximum entropy over the relevant space. Active information traditionally assumes a �nite
interval universe of discourse but can be extended to other caseswheremaximumentropy is de�ned. Illustrating this is the purpose of
this paper. Disequilibrium frommaximum entropy, measured as active information, can be evaluated from baselineswith unbounded
support.
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INTRODUCTION
Conventional thermodynamic maximum entropy brings
to mind the diffusion of an aerosol to be uniformly dis-
tributed throughout a closed room. Similarly, Shan-
non’s maximum entropy occurs when the probabilities
of an outcome of a fixed number of events are evenly
distributed and equal. Maximum entropy and probabil-
ity as intertwined concepts goes as far back as Jacob
Bernoulli, who stated in 1713 [2]:

“... in the absence of any prior knowledge,
we must assume that the events ... have

equal probability.”
Bernoulli’s Principle of Insufficient Reason (PrOIR) [40]
states that, in the absence of further knowledge, the
wisest assumption we can do on the distribution of a
finite set of points is that its elements are all equiproba-
ble. Bernoulli’s idea is so intuitive that it is difficult to
dispute. Attempts to do so have been repudiated [29].
Interestingly, several developments in science and math-
ematics during the twentieth century have confirmed its
validity. For example:

1. Information theory tells us that equiprobability is
the distribution with maximum entropy (maxent)
[22, 23].

2. Learning and optimization tell us that no search can
do better uniformly on average than a blind search
(i.e., an equiprobable search), which is the average
of all existing distributions of a finite sample space
[46, 47].

3. Bayesian inference uses equiprobability because
it constitutes a noninformative prior over a finite
sample space [3] (although, of course, other non-
informative priors are possible).

The PrOIR is based on absence of further knowledge.
We can generalize it to the principle of maximum entropy
(maxent), which can be more powerfully asserted “for the
positive reason that [the maxent probability distribution]
is uniquely determined as the one which is maximally
noncommittal with respect to missing information” [22].
A distribution with maximum entropy is such that it is
the least biased estimate possible on some given knowl-
edge, albeit partial (see, e.g., [5, 23, 41]). Such partial
knowledge usually takes the form of moments restric-
tions on a distribution living in a given space. Table 1
presents the maxent distributions under some moments
restrictions over the most relevant spaces [6].

In terms of active information, i.e. the information
gap between two different distributions, where usually
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Space Restrictions Distributions
Finite None Equiprobability

Finite interval [a, b] None U(a, b)
Z+ EX = µ Geom(1/µ)
R+ EX = µ Exp(1/µ)
R EX = µ; E(X − µ)2 = σ2 N (µ, σ2)

Table 1: Maximum entropy distributions over some relevant spaces.

Z+ = {1, 2, · · · } and N (µ, σ2) is normal with mean µ and variance σ2.

one of the two distributions is taken as a baseline, one
may choose the appropriate maxent distribution of Table
1 as this baseline. This change of perspective from the
PrOIR to the more general maxent viewpoint serves
multiple purposes.

First, it answers an old criticism by Häggström on
Dembski’s preliminary work. Häggström claimed that
“there is absolutely no a priori reason to expect that the
‘blind forces of nature’ should produce a fitness landscape
distributed [uniformly]” [20], and repeated his criticism
somewhat less rancorously in [21]. The truth is that we
expect a maxent distribution in every aspect of nature,
and an explanation is required when some natural process
does not follow it. Moreover, from a subjective point
of view, maxent is the safest and most conservative
assumption to make, since any other option will introduce
selection bias that has not been accounted for. Either
way, either in the ontological reality of nature or in our
epistemological apprehension of such reality, departures
from maxent cannot be explained away. It is not that
out-of-equilibrium explanations are not allowed, it is
that they must be accounted for. Thus, criticisms to
active information, if they aspire to be successful, must be
grounded on something else than the baseline distribution
being of maxent.

Second, it liberates active information from having
to deal with criticisms to the PrOIR [24, 45]. Many
criticisms have been repudiated [18, 28, 29]. For exam-
ple, Keynes devoted a whole chapter in his Treatise on
Probability to debunk it [25]. Keynes’ notions have been
addressed by Marks et al. [29].

Third, maxent invites a generalization of active in-
formation to other type of spaces beyond the finite one
considered until now. With this change, all of the pre-
vious results for active information continue being true
under the umbrella of a more universal maxent prin-
ciple. We can evaluate active information under non-
compact spaces and justify the use of some endogenous
distributions once we have acquired relevant knowledge.
Accordingly, we propose to expand the theory of active
information using maxent distributions as baselines.

The manifestation of maxent can be viewed thermo-
dynamically.

Example 1. The second law of thermodynamics fa-
mously states that the entropy of a gas in a closed room
reaches maximum entropy. Maximum entropy is also
manifest in other domains as documented in Table 1.

Example 2. Barometric pressure is measured from the
surface of the earth to space so is an example from Table 1
of maximum entropy distribution of Exp(1/µ). When the
temperature lapse rate is zero, the equation for percent
pressure decrease from sealevel is

P (h)
P0

= exp
(
−gMh

RT

)
where

• P (h) = pressure at elevation h,

• P0 = static pressure at sealevel,

• T = temperature in degrees Kelvin,

• h = height above sea level,

• R = universal gas constant: 8.3144598 J/(mol ·
K),

• g = gravitational acceleration: 9.80665 m/s2, and

• M = molar mass of Earth’s air: 0.0289644 kg/mol.

Example 3. The Maxwell-Boltzmann distribution de-
scribes the velocity in three dimensions by the vector
~v = [vx vy vz]′ of ideal gas particles as

f(~v) =
( m

2πkT

)3/2
e−

m~v′~v
2kT ,

where ~v′ denotes transposition of the vector and

• m = particle mass,

• T = temperature,

• k = Boltzman’s constant: 1.38064852× 10−23 m2

kg s−2 K−1

The velocity in each dimension is in R and, in accor-
dance with Table 1, the corresponding maxent displayed
in the Maxwell-Boltzmann distribution is normal.
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Example 4. Bernoulli’s PrOIR relates to the success
of a single trial, p. Repeating Bernoulli trials using the
same null information assumption of a Bernoulli trial
until the first success is, as shown in Table 1, Geom(p)
on Z+ and is, as an extension of a single Bernoulli trial,
therefore maxent.

GENERALIZATION
Equilibria in search and learning [15, 29, 33, 42] as dic-
tated by conservation of information and popularized by
the No Free Lunch Theorems [9, 10, 46, 47] dictates that,
predicated on maximum Shannon entropy, no search al-
gorithm will outperform any other on average. Active
information was introduced to measure the deviation
from equilibria, thereby providing a quantification of the
information infused in the algorithm to make it work
better than average.

Active information can be viewed as a generalized
instantiation of anomaly detection [1, 4, 13, 32] otherwise
known as novelty filtering [19, 30, 43, 44]. The status
quo of probabilistic uniformity is set and any significant
deviation is flagged as novel. The degree of deviation
from normalcy is measured by the active information.
Anomaly detection typically requires training data to
establish the quiescence of normalcy. Such is not the case
with active information. Normalcy, rather, is defined by
conservation of information which, in turn, defines the op-
erational equilibrium of the non-informed search. We will
show that this same approach can be applied elsewhere
where maximum entropy defined over different domains
and under different conditions uniquely establishes a per-
formance equilibria. Montañez has nicely extended the
analysis to the information capacity of search spaces and
machine learning in general [34–39].

To derive active information, let Ω be a search space
(for instance, one of those considered in Table 1) and
T ⊂ Ω be a target, where T is a measurable set. Find
the maxent distribution φ for Ω, subject to whatever is
known. The endogenous information is then defined as

IΩ = − log φ(T ). (1)

The units are dependent on the base of the log. When
base 2, the information is in bits. Base e gives units
of nats and base 10 gives Hartleys. The endogenous
information represents the inherent difficulty of the prob-
lem to reach the target T . Any additional knowledge
might modify the search generating a new distribution ϕ
that will assign probability ϕ(T ) of reaching the target
T . The information required to reach the target when
applying this knowledge under ϕ is then exogenous and
defined as

I1 = − logϕ(T ). (2)

The difference between (1) and (2) naturally defines what
is called the active information at the target T :

I+(ϕ|φ)(T ) = IΩ − I1 = log ϕ(T )
φ(T ) . (3)

Unless otherwise stated, all logarithms are taken to
be base 2, so that information is measured in bits. Out
of Equation (3) the following properties emerge.

1. A search is improved iff the assisted search has a
higher probability that the unassisted search. In
other words the active information is positive, i.e.
I+(ϕ(T )|φ(T )) ≥ 0 iff ϕ(T ) ≥ φ(T ).

2. A negative active information means that the
search induced by the exogenous probability is
deleterious e.g., the information about the loca-
tion of T was not accurate. This occurs when
ϕ(T ) < φ(T ). The active information can approach
−∞ as ϕ(T )→ 0.

3. The maximum active information occurs when the
probability of success in the alternative search
equals one, i.e. ϕ(T ) = 1. Then I+ = IΩ and
all available information has been extracted from
the search space.

4. Finally, a null active information means that the
exogenous information did not contribute anything
new in order to reach T . This occurs when there
is no improvement and ϕ(T ) = φ(T ) and the ex-
ogenous and endogenous information are identical.

Knowledge cannot always be translated into the search.
An interesting example in which additional knowledge
about the structure of the search space does not alter the
chances of reaching the target can be seen in the next
example:

Example 5. Let Ω = {ω1, ω2, . . . , ωn} be the initial
search space and let T ⊂ Ω be the target. Thus the
endogenous distribution φ is given by the equiprobabil-
ity of all singletons, so that φ(T ) = |T |/|Ω|. Although
equiprobability is sometimes referred to as a discrete
uniform distribution, in our context equiprobability is
not uniformity, since a uniform r.v. must live in a metric
space with some distance metric d, and the elements
of Ω must satisfy that d(ωi, ωi−1) = d(ωj , ωj−1), for
2 ≤ i, j ≤ n (see, e.g., [7]). Suppose further that we learn
that ωi−ωi−1 = 1, for 2 ≤ i ≤ n. Thus φ can be replaced
by a uniform distribution U. The uniform distribution in-
corporates the knowledge about the equidistance between
points in the space but such knowledge is not detected
by active information since I+ = log U(T )/φ(T ) = 0.

The situation in Example 5 occurs because informa-
tion is defined in terms of the probability of events, but
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not on the events as such. Also, notice that active in-
formation might be introduced when we gain knowledge
on the structure of the search (sample) space or on the
location of the target. Example 5 deals with the first
case: active information that could be added because we
learned something about the space. Possible practical
implications of this situation might be seen, for example,
when comparing two different categorical r.v.’s over the
same space (e.g., from nominal to ordinal, as when we
jump from a space in which the only thing we knew
about it was its cardinality but then learned that its ele-
ments are ordered) —or even a categorical r.v. against
a uniform one over the same space provided both r.v.’s
assign equal probability to each singleton (e.g., from
nominal to uniform, when we learn that the elements
of the space are equidistant). Thus, although a nonzero
active information implies a change of distribution, not
all acquired knowledge about the search space implies a
nonzero active information.

Definition 1 (Stochastic domination). Let φ and ϕ be
two (cumulative probability) distributions over Ω. φ is
stochastically dominated by ϕ if φ(x) ≥ ϕ(x) for all x.

Example 6. Let Ω = {1, 2, 3}. And consider two r.v.’s
X and X ′ on Ω, with mass functions fX and fX′ given in
Table 2. Calling FX and FX′ the respective distributions
of X and X ′, then FX(x) is stochastically dominated by
FX′(x).

1 2 3
fX 2/3 1/6 1/6
fX′ 1/3 1/3 1/3

Table 2: FX(x) ≥ FX′ (x) for all x ∈ Ω

Example 7. Let X, Y , and Z be exponential r.v.’s with
intensity parameters λ = 1/µ = 0.5, 1, 1.5 respectively,
and distributions FX , FY , FZ , respectively. Then FZ

is stochastically dominated by FY , and FY in turn is
stochastically dominated by FX . See Figure 1.

Lemma 1. Let φ and ϕ as in Definition 1. ϕ is stochasti-
cally dominated by φ if and only if I+(ϕ|φ)((−∞, x]) ≥ 0
for all x.

Thus, whenever ϕ is stochastically dominated by φ,
any target of the form T = (−∞, x] has non-negative
active information, and negative active information for
any target of the form T ′ = (x,∞).

ACTIVE INFORMATION AS A COMPLEX-
ITY MEASURE
Active information can also be seen as a statistical com-
plexity measure. Feldman and Crutchfield argue that

Figure 1: Three CDF’s of the exponential r.v.’s with intensity parame-
ters 0.5, 1, and 1.5. Clearly the one with parameter 1.5 is dominated
by the one with parameter 1, which in turn is dominated by the one
with parameter 0.5. doi:10.5048/BIO-C.2020.3.f1

at least three things are needed to build a statistical
complexity measure: (i) it needs to vanish on the ex-
tremes, (ii) it needs to have a clear interpretation, and
(iii) it needs to have a specified use [17]. Active infor-
mation, I+ = logϕ(T )/φ(T ), as a statistical measure of
complexity per event satisfies these requirements:

(i) The active information is well defined. It is 0 when
the endogenous probability equals the exogenous
one (φ(T ) = ϕ(T ).) On the other hand, when
ϕ(T ) = 1 we say that the search is perfect and I+ =
IΩ, which means that all information available in
the problem was extracted in the modified search
for the target.

(ii) The interpretation of I+ is evident from its defi-
nition and the four properties listed in the Gen-
eralization section. It measures how many bits of
difference there are between the endogenous and
the exogenous information at the event T . The
active information is a measure of the degree to
which a search has been assisted to succeed.

(iii) When Wolpert and Macready popularized the No
Free Lunch Theorems (NFLT), they established
the impossibility of one search algorithm to out-
perform any other without additional knowledge
[46, 47]. That is, in absence of additional informa-
tion, no algorithm should do better, on average,
in finding a target than blind search. In their
words, “the performance of any two algorithms...
is, on average, identical” [46]. In reaching a target,
however, search algorithms usually do better than
blind chance. Why is this so? Again, using the
words of Wolpert and Macready, it is because of
the direct input of information, by “incorporating
problem-specific knowledge into the behavior of
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the [optimization or search] algorithm” [47]. Ac-
tive information determines the information gap
between the search of a target by pure chance and
the input of an expert/dumb programmer.

The usual way to proceed with measures of complexity
on a bounded domain is to account for some kind of dif-
ference between equilibrium and non-equilibrium distri-
butions, i.e. equiprobability versus non-equiprobability,
for finite settings. For instance, López-Ruiz et al. define
disequilibrium (i.e., the sum of the quadratic Euclidean
distance of the probability of atomic events), DE , as
part of their complexity measure [26]; Martin et al. re-
place the Euclidean distance by Wootters’ [48] to obtain
their disequilibirum DW , while keeping the difference
between equilibrium and non-equilibrium distributions
[31]. And finally active information is the difference of
the information for an event under equilibrium and non-
equilibrium [8, 9, 14, 16, 27, 34]. In fact, just as the infor-
mational entropy is the average of the self-information,
the Kullback–Leibler distance ([6], chap. 12), referenced
to the maximum entropy distribution, is the average of
the active information over all the elements of a finite
alphabet.

CONCLUSION
We have proposed extension of active information for
domains other than those confined to a finite interval.
Maximum entropy (maxent) is defined on domains other
than a finite interval. These maxent manifestations are
evidenced in both applications and nature. Using these
generalized maxent measures, active information for-
merly associated with finite domain distributions can
be extended. The extension conforms to the criteria for
measuring statistical complexity.

Active information has recently been expanded as a
multidimensional mode hunting tool [11]. Briefly speak-
ing, in a finite space every deviation from equiprobability
constitutes a local mode. Thus in every event of positive
active information there is a local mode. In a subsequent
paper, the generalized measure is applied specifically to
the Wright-Fisher model of population genetics [12].
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37. Montañez GD (2013) Bounding the number of fa-
vorable functions in stochastic search. 2013 IEEE
Congress on Evolutionary Computation (CEC), 3019–
3026. doi:10.1109/CEC.2013.6557937
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