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Abstract

In the context of population genetics, active information can be extended to measure the change of information of a given event
(e.g., �xation of an allele) from a neutral model in which only genetic drift is taken into account to a non-neutral model that includes
other sources of frequency variation (e.g., selection andmutation). In this paper we illustrate active information in population genetics
through the Wright-Fisher model.
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INTRODUCTION
Stochastic processes have historically been closely related
to the study of biological populations. In fact, biological
applications have been central to the development of
concepts that are today at the core of probability and
statistics. At the beginning of the twentieth century, in
a quest to mathematize Darwin’s model, Ronald Fisher
developed fundamental concepts of statistical inference
and also the basic stochastic process in the analysis of
population genetics [13]. Fisher has been crowned “the
greatest of Darwin’s successors” [9]. His theory, together
with Sewall Wright’s contributions, served to develop
what was subsequently dubbed the Wright-Fisher model
and is the focus of this paper.

Interestingly, as central as information has been to ge-
netics since the discovery of DNA and protein synthesis,
information theory has been almost universally neglected
in the stochastic theory of population genetics. We intro-
duce it here from the perspective of active information
under maximum entropy [6]. Our main goal is to mea-
sure the information change in an event when we jump
from the neutral Wright-Fisher model, in which the only
“force” in operation is genetic drift, to the non-neutral
Wright-Fisher model with mutations and selection. In
some instances this active information is positive and
large, making selection and mutation not free lunches in
the sense of Wolpert & MacReady [20].

In general, active information is a measure of the
degree to which a process deviates from equilibrium. In
particular, when it is positive, it measures the amount
of guiding information needed to achieve success in cer-
tain stochastic searches [5, 11, 17]. Active information
has been applied to analysis of software and modeling
attempts to simulate evolution including AVIDA [16],
EV [19] and metabiology [3]. Each model works only
because external information has been applied to guide
the program to success. In subsequent studies critiquing
these models, significant active information has been
shown to be required for the success of AVIDA [10], EV
[18], and metabiology [12].

To our knowledge, this paper is the first application of
active information to population genetics and the first ap-
plication of generalized active information [6] anywhere.
Our analysis opens the door to further research on more
sophisticated models of population genetics.

THE WRIGHT-FISHER MODEL
In the simplest scenario, the neutral Wright-Fisher model
(see, e.g., [7, 8]), there are N individuals of a haploid
population (i.e., each individual has a single copy of each
gene), and each gene has two types of alleles: A and
a. All individuals of generation n are replaced in the
following generation n+ 1 according to a sampling with
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replacement among all individuals in generation n. In
other words, if there are i individuals with the A allele in
generation n, then the probability of having j individuals
with that same allele in generation n+1 is binomial with
parameters N and i/N :

pn,n+1(i, j) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j
. (1)

This type of model is sometimes called the forward model
because it is focuses on future offspring.

The behavior of future generations depends on the
initial distribution. In the absence of any additional
knowledge, we assume the N elements are chosen to be
either of type A or type a with equal probability, so
that the null probability of j alleles being of type A
in the first generation is, according to the principle of
maximum entropy and assuming that both alleles a and
A are present at time 0,

p0(i) =
1

N − 1
, (2)

for i = {1, . . . , N − 1}. In fact, it can be shown that the
number of A alleles has this distribution, conditionally
on the event that both alleles a and A have coexisted
for a long time, so that none of them has been lost (see,
e.g., [4, Chapter 8.4]).

The only “force” in the neutral Wright-Fisher model
with offspring probability given by (1) is genetic drift;
i.e., the changes in alleles proportion from generation to
generation are due to genetic drift. The incorporation of
selection and mutation (i.e., a purely Darwinian process)
is not imposed in (1). Following Etheridge [8], we will
introduce these two by steps. Notice from (1) that the
neutral probability of sampling A is i/N , and the neutral
probability of sampling a is 1− i/N . When we introduce
a selection coefficient s these probabilties are modified
as follows:

P[A is sampled] =
i(1 + s)

i(1 + s) +N − i
and

P[a is sampled] =
N − i

i(1 + s) +N − i
. (3)

Thus, with respect to (1), when s is positive, A is favored
in the sampling, in whose case A is said to be beneficial ;
on the other hand, when s is negative, A is not favored
in the sampling, in whose case A is said to be deleteri-
ous. When s = 0, we go back to the original drift-only
scenario.

Now, suppose that every individual of type A mu-
tates to a with probability µ1, and every individual of
type a mutates to A with probability µ2. In this case,
after adding both selection and mutation, the expected

proportion of type A offspring in the next generation is
given by

θi =
i(1 + s)(1− µ1)

i(1 + s) +N − i
+

(N − i)µ2

i(1 + s) +N − i
. (4)

Notice that the first term at the RHS of (4) corresponds
to the probability of sampling A in (3) multiplied by
(1 − µ1); that is, it considers the type-A individuals
that did not mutate to a. Analogously, the second term
corresponds to the probability of sampling a multiplied
by µ2; that is, it considers the proportion of type-a
individuals that mutated to A. The two terms added in
(4) give the proportion of type-A individuals in the next
generation.

We know from (1) that, given i individuals of type
A at time n, the conditional distribution of type A in-
dividuals at time n + 1 is Bin(N, i/N). The addition
of selection and mutation changes the conditional dis-
tribution to Bin(N, θi), where θi is as in (4). This is
the so-called Wright-Fisher model with selection and
mutation.

Active information in the Wright-Fisher model
For the Wright-Fisher model, let ψ ∼Bin(N, i/N) and
ϕ ∼Bin(N, θi) be the random values obtained for the
neutral and the non-neutral models described above,
respectively.1 Let the target T be a given event under
observation in the space {0, . . . , N}. Conditioned on
having i type-A alleles in the present, the endogenous
information, IΩ, is the Shannon information associated
with the probability ψ of reaching a target T under an
assumption of neutrality.

When neutrality is disregarded, the probability of
reaching T changes and the Shannon information it gen-
erates is called exogenous information, I1. The amount
by which this information has changed from neutrality
to non-neutrality,

I+ = IΩ − I1, (5)

is the active information. It can be positive, negative
or zero. Active information will be negative when the
non-neutral model performs worse than the neutral one,
in terms of finding the target T .

Lemma 1.
i) The active information of the success event of draw-

ing one single A allele (with probability i/N) of
the Wright-Fisher model with selection and muta-
tion, referenced to the neutral model, is given by
I+ = log θi

i/N .

ii) In particular, when we add only selection but no
mutations, the active information becomes

I+ = log
N +Ns

N + is
. (6)

1We here have reversed the order of notation with respect to

[6].
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Remark 1. This computation of active information in
Lemma 1 refers to one child drawing an allele from a
pool of i A-alleles and N − i a-alleles. This corresponds
to Ω = {a,A} and T = {A}. In this case ψ(A) = i/N
is not uniform, but it can still be justified as a ‘maxent
procedure’, since the child draws the parent according
to a uniform distribution from a pool of N parents.

Proof. i. Note that the endogenous information of the
success event is given by IΩ = − log(i/N), and the ex-
ogenous information of that same event is I1 = − log θi.
To obtain the active information just apply (5).

ii. Replace the actual values of (3) in part i :

I+ = log

i(1+s)
i(1+s)+N−i

i
N

= log

i(1+s)
N+is
i
N

= log
N +Ns

N + is
.

For N > i, from part ii. of Lemma 1, we see that
the active information of success is positive whenever s
is positive, and it is negative whenever s is negative. It
is zero when s = 0.

Lemma 2. Let ϕ ∼Bin(N, θi) and ψ ∼Bin(N, i/N). Let
also T be the event that, conditioned on having i type A
alleles in the present, we obtain j type A alleles in the
next generation. Then

I+(ϕ|ψ)(T ) = j log

(
θi
i
N

)
+ (N − j) log

(
1− θi
1− i

N

)
.

In particular, when µ1 = µ2 = 0, the active information
becomes

I+(ϕ|ψ)(T ) = j log(1 + s) +N log

(
N

N + is

)
.

Proof.

I+(ϕ|ψ)(T ) = log

(
θji (1− θi)

N−j(
i
N

)j (
1− i

N

)N−j
)

= log

( θi
i
N

)j (
1− θi
1− i

N

)N−j
= j log

(
θi
i
N

)
+ (N − j) log

(
1− θi
1− i

N

)
.

To see the particular case, we replace θi by the probability
of sampling A in (3) to obtain:

I+(ϕ|ψ)(T ) = j log

(
i(1+s)
N+is
i
N

)
+ (N − j) log

(
N−i
N+is
N−i
N

)

= j log

(
N(1 + s)

N + is

)
+ (N − j) log

(
N

N + is

)
= j log(1 + s) +N log

(
N

N + is

)
.

Conveniently, it is easier to calculate the active infor-
mation of the event T than the individual probabilities
ϕ(T ) and φ(T ), since the combinations

(
N
j

)
cancel out

in the argument of the logarithm.

Corollary 1. When mutations are absent and selection
is present, the active information of fixation of the type
A-allele in generation n+ 1, given that there are i type
A-alleles in generation n (i.e., that j = N in generation
n+1, given that the proportion of A alleles in generation
n is i/N), is

I+ = N log

(
N +Ns

N + is

)
. (7)

Remark 2. Notice that the active information in (7) is
N times the active information in (6).

This is a fixation probability of A in a single step,
which is highly unlikely unless i ≈ N in generation n.
A more interesting result has to do with the eventual
fixation of A, but the calculation of this probability,
particularly for the model with selection and mutation,
is extremely complicated. In this case, the best strategy
is to approximate the process with a diffusion, as we do
in the next subsection.

Active information for the Wright-Fisher model in
the limit
The neutral Wright-Fisher model is a Markov chain with
state space given by {0, 1, . . . , N} and transition prob-
abilities as in (1). The states 0 and N are absorbing,
meaning that once the chain enters in one of these two
states, it cannot leave. When the chain enters the state
N , it means that A has become fixed. When the chain
enters the state 0, A goes extinct and a is fixed. The
conditional probability of fixation of A, given that there
are i alleles of type A at the present, is i/N [7]. How-
ever, this fixation probability and other calculations are
extremely complicated when selection and mutations are
present and the distribution is as in ϕ. For this reason,
it is customary to look for diffusion approximations.

A one-dimensional diffusion is a strong Markov pro-
cess on R with continuous paths (see e.g. [15]). A
diffusion {Xt}t≥0 can be expressed as the solution of
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a stochastic differential equation driven by a Brownian
motion with appropriate boundary conditions:

dXt = µ(Xt)dt+ σ(Xt)dBt, (8)

where Bt is a Brownian motion, and µ(x) and σ2(x) are
called the infinitesimal drift and variance of the diffusion.
The limiting diffusion of the Wright-Fisher model with
selection and mutation is given by (see [8, Lemma 5.5]):

µ(p) = αp(1− p)− v1p+ v2(1− p) (9)

σ2(p) = p(1− p). (10)

For this limiting diffusion, time has been rescaled to units
of N generations: α = Ns, v1 = Nµ1, v2 = Nµ2, and p is
the proportion of type A individuals in the population. In
the absence of mutations (v1 = v2 = 0), the conditional
probability of fixation is given by Etheridge ([8], p. 68):

Lemma 3. Suppose that there is no mutation (v1 =
v2 = 0). If the initial proportion of A-alleles is p0, the
probability pfix(p0) that the A-allele eventually fixes in
the population (that is the diffusion is absorbed in p = 1)
is

pfix(p0) =

{
1−exp(−2αp0)
1−exp(−2α) if α 6= 0,

p0 if α = 0.
(11)

From Lemma 3, the next Corollary follows directly:

Corollary 2. Under the same conditions as before, let T
be the event that, given that there is an initial proportion
p0 of A-alleles, the conditional event that the A-allele
gets fixed is

I+(T ) = log

1−exp(−2αp0)
1−exp(−2α)

p0

. (12)

Notice that at fixation the search space becomes
Ω = {0, 1}, and the target is T = {1}.

Of course, once we add mutation, fixation loses all
meaning. With mutations, there are no absorbing states
in the Markov chain. If a selected allele arises through
mutation in an otherwise neutral population, then its
actual frequency is 1/N , so with a little abuse of notation,
still calling pfix(·) the first time that the mutated allele
has frequency 1, we obtain

pfix

(
1

N

)
=

1− e−2s

1− e−2Ns
.

In this scenario, Etheridge [8] considers three interesting
cases:

1. Deleterious alleles: s < 0. If |s| � 1, and N |s| � 1,
then pfix(1/N) ≈ 2|s|e−2N |s|. The fixation proba-
bility of a deleterious allele is exponentially small
and it decreases with increasing population size.

2. Beneficial alleles: s > 0. If s � 1, Ns � 1, then
pfix(1/N) ≈ 2s, almost independent of population
size.

3. Nearly neutral alleles: If N |s| � 1, then A is nearly
neutral and pfix(1/N) ≈ 1/N .

For these three cases, the active information with respect
to the neutral model is given respectively by

1. Deleterious alleles: I+ ≈ log
(
2N |s|e−2N |s|). If

we measure the information in nats, it becomes
I+ = −2N |s|+ ln(2N |s|) < 0.

2. Beneficial alleles: I+ ≈ log 2Ns > 0. In spite of the
probability of fixation being almost independent
of population size, active information is dependent
on population size.

3. Nearly neutral alleles: I+ ≈ 0.

Thus, although most alleles (beneficial or deleterious)
are lost, “fitness differences that are too small to be
measured in the laboratory (|s| < 1) can still play an
important role in evolution (if N |s| � 1)” [8]. This
important role is made explicit by the active information
measure. In fact, except on the case of nearly neutral
alleles, the population size plays a very important role:
for the deleterious case, it makes the active information
to decrease linearly in N ; and for the beneficial allele, it
makes the active information to increase logarithmically
in N .

ACTIVE INFORMATION OVER NONNEGA-
TIVE REALS: COALESCENCE
The geometric distribution with mean µ possesses max-
imum entropy among all distributions over the non-
negative integers with specified mean µ. Letting τ ∼
Geom(1/µ) and calling ψµ its distribution, this means
that, if we have a search space Ω = {1, 2, · · · } and our
only knowledge is that we are looking at a target T ⊂ Ω
according to a distribution with mean µ, every repre-
sentation of the search of T must start with the null
(endogenous) information in terms of τ , because it is the
equilibrium from which the active information will be
measured (see Table 1 of [6]).

This sets the stage to think of the Wright-Fisher
model in reverse—as a description of ancestors rather
than descendants. Assume that our prior knowledge is
that the population has size N . Then, since each new
generation is obtained after a sampling with replacement,
the probability of two given individuals at the present
generation sharing the same father is 1/N .

Defining T := {τ = k}, for k ∈ Z+, we obtain that the
probability of a common ancestor k generations before
is given by a geometric distribution with mean N :

ψ(T ) =

(
1− 1

N

)k−1
1

N
, (13)
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and the endogenous information is IΩ = − logψ(T ). Sup-
pose that after further analysis we obtain knowledge that
the population is actually of size ν 6= N . This defines
an alternative search that uses − logϕ(T ) bits of infor-
mation, where ϕ is the mass density of a geometrically
distributed random value with mean ν. The active infor-
mation measured in nats becomes

I+(ϕ|ψ)(T ) = log

(
1− 1

ν

)k−1 1
ν(

1− 1
N

)k−1 1
N

= log

{(
1− 1

ν

1− 1
N

)k−1
N

ν

}

= log

{(
1− 1

ν

1− 1
N

)k
N − 1

ν − 1

}

If we rescale k = dN and take ν to be O(N), then there
is 0 < c < ∞ such that ν ≈ cN when N is large, and
the active information becomes

I+(ϕ|ψ) ≈
(

1− 1

c

)
d− log c, (14)

which is a linear function of d. From this we notice that
the limiting active information is positive for large d
when ν > N , i.e. c > 1. On the contrary, the limiting
active information is negative (positive) for small d when
ν > N (ν < N), i.e. c > 1 (c < 1). This corresponds
to our intuition. For instance, if tilting increases the
size of the population (c > 1), then we expect longer
coalescence times, and this make it easier (more difficult)
to find targets that correspond to unusually large (small)
coalescence times.

A natural extension of this model is to consider a
geometric distribution with success probability λ = 1/N ,
which, as N grows, approaches an exponential distribu-
tion with intensity λ. The exponential distribution is
also the maxent distribution over the set of all distribu-
tions with support on the nonnegative reals and intensity
λ (see Table 1 of [6]). Then, when our only knowledge
of a search is that it is done on {0} ∪ R+ and that it
has a finite mean µ = λ−1 = N , [6] tells us that our
endogenous search must be guided by an exponential
random value with mean µ.

Consider the Wright-Fisher model and assume we are
taking N generations as our unit of time (i.e., just like
1 minute has 60 seconds, one unit of time here has N
generations), then, going backwards, the time to go from
i lineages to i− 1 is exponential with intensity i(i− 1)/2
and mean 2/[i(i− 1)]. (J. F. C. Kingman was the first to
develop the coalescent in [14]; Berestycki has an excellent
material explaining where the current research is [2].)

Any change in the distribution, as usual, is contribut-
ing information for faster or slower coalescence. To see
this, define the event T = “The time to coalescence from

i to i− 1 lineages is more than t.” Then any other distri-
bution altering the target, say another exponential with
different mean µ, is adding

I+(T ) = log
exp

{
− 1
µ t
}

exp
{
− i(i−1)t

2

}
=
i(i− 1)t

2
− 1

µ
t

= t

(
i(i− 1)

2
− 1

µ

)
nats of information. Thus, in the same lines of the
discrete situation, when µ = 2

i(i−1)c, which corresponds

to the rescaled coalescence time in units of N for a
population of size cN , the active information becomes

I+(T ) =
i(i− 1)t

2

(
1− 1

c

)
.

Thus, the active information is positive when µ >
2

i(i−1) and negative when µ < 2
i(i−1) . As expected, as

long as we are considering another exponential distri-
bution, shrinking the mean of the exogeneous search
will lessen the probability that the coalescence time is
large, whereas augmenting the former will increase the
probability of the latter.

CONCLUSION
Generalized active information is well-suited to measure
the amount of information introduced in a population
genetics model when neutral models are replaced by non-
neutral ones. In this paper, we focused on the Wright-
Fisher model, studying how much information is added
by the Darwinian paradigm (considering selection and
mutations) with respect to a neutral model that only
takes into account genetic drift. Other variation sources
(e.g., recombination) can be considered in order to deter-
mine the amount of information they introduce to the
analysis.

The Wright-Fisher model is the basic introductory
model of population genetics. As such, this article opens
up a research path in which the neutral and non-neutral
versions of more sophisticated models can be compared
through active information.

In the pre-limiting model, as it was made explicit in
Remark 2, when comparing the Wright-Fisher model with
mutation to the neutral Wright-Fisher model, the active
information of fixation is N times the active information
of the success event of the binomial distributions under
consideration.

When we go to the limit, as we saw at the end of
the section “The Wright-Fisher Model,” active informa-
tion makes explicit fitness differences that cannot be
observed in the laboratory but that still are significant
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asymptotically. In fact, even though the probability of
fixation of a beneficial allele in a selection-only model is
independent of the population size, active information
shows that the information that the selection coefficient
introduces plays a very important role as the population
size increases. When a deleterious allele is introduced,
the population size makes the active information nega-
tive; and when a beneficial allele is introduced, it makes
the active information positive.

In summary, we see at least two things: First, selec-
tion does not act in the model as an innocuous force.
Selection adds information. Second, since selection is
an information source (and mutations when they are
present), it is not a free lunch, and the information it
adds is compounded by the population size. Our re-
search stands alongside the work of Basener and Sanford
[1] who through alternative analysis have demonstrated
the ineffectiveness of the Wright-Fisher model to create
information ex-nihilo.

When active information was originally introduced,
its purpose was to measure the amount of information
added by a programmer in an alternative search, ref-
erenced to a blind one. In this kind of problem the
(search) space is always compact. However, non-compact
spaces require a generalization of the baseline distribu-
tion beyond uniformity in order to be able to account for
equilibrium in these spaces, particularly when the space
is at least countably infinite. This generalization was
developed in [6]. As such, to our knowledge, this applica-
tion to population genetics is the first to use generalized
active information.
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