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INTRODUCTION
At that time, not being a biologist, I was not familiar with the 

field of systems biology, and did not know of the revolutionary 
new work that was beginning in this field. In the decade since 
then, systems biology has dramatically confirmed this picture of 
design-based research.  

Before delving into the details of this new systems biology 
paradigm, it is worthwhile to look in more detail at what dif-
ference an intelligent design approach would make in doing 
biology. The intelligent design view makes the assumption that 
at some time in the past, one or more intelligently guided events 
took place that cannot be described by known physical laws 
and reasonable probabilities.  How this happened is a secondary 
issue: some ID proponents invoke miraculous jumps within the 
history of the universe, at points like the Cambrian explosion 
[3], while others invoke no jumps, i.e., no discontinuities in 
physical law during the unfolding of the universe, but instead 
invoke extreme fine tuning at the beginning of the universe 
[4]. The Darwinist approach, by contrast, assumes that at some 
time in the past, random variation and natural selection led 
to existing biological systems with reasonable probabilities [5].  

While the intelligent design approach and the neo-Darwinist 
approach make very different assumptions about the distant 
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Opponents of intelligent design (ID) theory have often 
argued that the ID approach is scientifically sterile—that it 
does not encourage scientific discovery.  In response to this 
argument, which has appeared in many places over the years 
[1], in 2001 I wrote:

A theory of design can in principle be predictive and 
quantitative. For example, a computer chip manu-
facturer, which takes apart a chip made by a rival 
company, proceeds on the assumption that the cir-
cuits are well designed; this does not lead them to 
end their investigation, but rather, drives their study 
of the chip. The good-design assumption leads to 
specific predictions and applications, e.g., the pre-
diction that it is unlikely to find wires which take up 
metal and space but serve no purpose, so that there 
should be few wires which are dead ends, with the 
application that studying any particular wire is likely 
to be useful. A bad-design assumption (e.g. that the 
chip maker made many random circuits and then 
just picked out the ones that worked) would give 
very different predictions. [2]
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past, both approaches are primarily concerned with the mate-
rial processes that exist now in biological systems.  The idea that 
ID implies giving up on looking for material causes altogether, 
invoking a miracle at every turn, is false.  Rather, ID propo-
nents base their arguments on material causation, arguing that 
the network of existing, known causes and effects in biology 
are best described as a product of past actions of an intelligent 
designer. In fact, they often criticize neo-Darwinians for invok-
ing too many unknown and mysterious causes, such as de novo 
generation of genes [3].  Darwinist biology also largely focuses 
on presently operating causes and effects, for a much more 
mundane reason—the money in biology is in things that we 
can use and manipulate now, not in things that no longer exist. 

If both viewpoints tend to focus on material causes and effects 
in presently existing systems, where do they diverge in their 
predictions? Consider the two cases mentioned above, namely a 
very good human designer and a very bad human designer. The 
bad designer may, for example, be a Darwinian designer who 
simply tries all kinds of things and throws out the attempts that 
don’t work. How would we expect their products to differ? 

To start, we would expect the good designer to produce prod-
ucts with few non-functional elements. This is related to the 
expectation that good design will have a high degree of optimi-
zation, or efficiency.

It is possible to imagine that a bad designer could also obtain 
some degree of optimization by simply trying many times, and 
always keeping the most efficient version. This is the Darwin-
ian explanation of the efficiencies that may exist in biological 
systems. A bad designer could make random changes to existing 
designs, and toss away the less optimal versions each time. But 
even a short consideration tells us that such an approach would 
probably have some non-functional or non-optimal elements, 
and that we would expect more of them than we would in a 
truly well-designed system. Thus, proponents of Darwinism 
have historically argued for “junk” in living systems, such as 
“vestigial” organs or “junk” DNA [6,7].1 

A good-design assumption also leads us to expect other 
attributes besides just the lack of non-functional elements. In 
well-designed systems we expect to find subtle and elegant meth-
ods. By contrast, in badly designed systems we expect to find 
“kludgy” and “brute force” methods, i.e., methods that involve 
gross inefficiencies but get the job done. Proponents of Dar-
winism have often argued that the kludgy, inelegant methods 
that exist in biology are evidence that biological systems are not 
designed by an intelligent agent [9]. 

A good-design approach also leads us to think in terms of the 
designer’s goals, i.e., to engage in teleology. With good design, 
we can see what purpose things serve, while with bad design, 
we must wonder, “What were they thinking?”,  like a person 
discovering bad wiring schemes or bad plumbing in home 
repairs done by a previous owner. Good design makes sense to 
us because it accomplishes its purposes well. In contrast, Dar-
winism has historically rejected all teleological thinking [10].

Some may disagree with aspects of the characterizations I 

1	 While the notion of “junk” DNA has decreased in popularity, it is still often pro-
moted [8].

have given here. But regardless of the details, it should not be 
hard to see that the two different accounts of the history of 
biological organisms will give very different expectations for 
what kinds of mechanisms will exist in biological organisms 
in the present. Given these different approaches and different 
expectations, what can current systems biology tell us? Which 
paradigm fits more naturally with the way that systems biology 
is actually being done?

The Revolution in Systems Biology
In 2009, I attended the March Meeting of the American 

Physical Society (APS) in Pittsburgh, the largest annual physics 
conference in the United States. At this meeting, there were at 
least ten two-hour sessions on systems biology. The excitement 
about systems biology at that meeting was palpable. Speaker 
after speaker talked about how this field was, for the first time 
in history, allowing quantitative, mathematical predictions for 
biophysics that were being confirmed regularly by experiments.  

This excitement has also been reflected in the literature. At 
least three new journals have been created in the past few years 
(BMC Systems Biology, IET Systems Biology, and Systems and 
Synthetic Biology). Bud Mishra of New York University writes 
in a review article for the Royal Society [11], “Systems biology, 
as a subject, has captured the imagination of both biologists 
and systems scientists alike.” Koeppl and Setti [12] similarly 
write, “Systems and synthetic biology are two emerging disci-
plines that hold promise to revolutionize our understanding of 
biological systems and to herald a new era of programmable 
hardware, respectively.” Allarakhia and Wensley declare [13], 
“Since the completion of the human genome project a new bio-
logical paradigm has emerged, namely systems biology.” Finally, 
Hiroaki Kitano [14] proclaims, “The application of systems 
biology to medical practice is the future of medicine.” 

Given all this excitement, what is this new paradigm? Sys-
tems biology as a whole can be defined as the study of the “big 
picture” in cell biology, that is, looking at whole systems and 
how they function, rather than using a “bottom-up” approach 
that tries to deduce function from molecular interactions. The 
terms “holistic” or “emergent” are commonly used [15-17]. 
Systems biology researchers reject a reductionist view of biol-
ogy, which says that adequate understanding can be obtained 
by starting with the physics of microscopic processes, and then 
working up to higher-level processes. 

The new paradigm in the field that is gaining so much atten-
tion, however, is not just to pay attention to  larger systems, 
but a new approach to looking at these systems. In particular, 
the new paradigm is to use the methods of systems engineering 
when looking at biological systems. R. Rushmer writes,

A new era of scientific research is set to produce a 
type of engineer unlike any other and take the UK 
into what experts claim will be the third industrial 
revolution after the one in information technology. 
Biology and engineering groups are converging to 
develop a new field known as systems biology. It bor-
rows techniques and tools from systems engineering 
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to build and test mathematical models of biologi-
cal components, such as organs and cells. Experts 
predict that systems biology will revolutionise the 
medical sector. Discoveries in health and disease will 
lead to further research, which could boost the engi-
neering industry with new materials, biofuels and 
manufacturing capabilities[18].

Biologists and biophysicists are now learning to think like 
engineers when approaching biological systems. 

An important distinction must be made here. While to many 
people, engineering and physics are fundamentally similar, 
since engineering uses many physics principles, the approaches 
of the fields are quite different in practice. The world of physics 
has been dominated by bottom-up, first-principles thinking. In 
many cases this has meant starting with the microscopic ele-
ments of a system, but even in the fields of physics that look 
at macroscopic behavior, the focus has been on elementary, 
universal principles such as “scaling laws.” The overriding para-
digm in physics has been that simple, non-teleological rules 
will eventually explain everything. Even emergent behavior in 
complex systems is assumed to be the result of simple interac-
tions [19,20]. 

By contrast, engineering takes a top-down approach that is 
explicitly teleological. A goal is defined, and then the parts are 
arranged to bring about that goal. Basic physics principles may 
or may not be used, depending on whether they are helpful. 
Engineering principles are fundamentally design principles, not 
reductionist principles. Engineering students learn good ways 
of solving problems to achieve pre-defined goals in the same 
way that physics students learn universal physical laws.

The reductionist physics-like approach has been the domi-
nant paradigm in biology since the Enlightenment, but systems 
biology researchers have argued that reductionism has arrived at 
the limits of its usefulness [21,22]. Even the type of reductionist 
physics that focuses on universal behaviors such as scaling laws 
has limited value in biology [23]. The new paradigm, by con-
trast, calls for an explicitly engineering-like approach in terms 
of design goals.  While not everyone in the field agrees with the 
use of engineering terminology, even those who don’t like the 
word engineering still use engineering-like teleological terms. 
For example, Wolkenhauer and Mesarovic, writing an essay 
against the use of engineering terms, say:

We first need to realize that in order to control, reg-
ulate or coordinate something, we mean to adapt, 
maintain, optimize. Thereby, implicitly, there must 
exist a goal or objective [24]. [Emphasis in original.]

The holistic or emergent approach of systems biology is 
therefore not just a focus on larger systems or interactions of 
parts. The productive new paradigm is to look at those larger 
systems from the standpoint of an engineer seeking an objec-
tive. This is exactly the perspective I argued in 2001 should arise 
from a belief in intelligent design. 

ENGINEERING METHODS IN SYSTEMS 
BIOLOGY

It has become an extremely productive paradigm in biol-
ogy to look for biological systems that  exhibit the properties 
of sophisticated engineered systems, i.e ones that resemble 
methods developed by human engineers over the past few hun-
dred years to accomplish complicated tasks. In what follows I 
describe examples of advanced engineering methods found in 
biological systems.

Negative feedback for stable operation
 Anyone who takes introductory electronics knows about the 

ubiquitous engineering tool of negative feedback. Suppose that 
we want to amplify a small input signal. For a system with large 
amplification, one can imagine that small changes of the ampli-
fier, for example due to temperature fluctuations, could lead to 
large changes of the output. In a negative feedback system, a 
small amount of the output is taken and subtracted from the 
input. Thus, if the output swings too high, it immediately less-
ens the input, which reduces the output, and if it swings too 
low, this increases the input, pushing the output back up. The 
result is a stable amplification that is less sensitive to environ-
mental fluctuations. There are numerous examples of this in 
biology [14,25,26].

Thresholding and discrimination
On the other hand, another ubiquitous engineering method 

is to use positive feedback, in which the output is added to the 
input rather than subtracted. While this can lead to unwanted 
results in some cases (e.g. the familiar whistle when a micro-
phone picks up too much of the output of the loudspeakers in 
a room), it is also very useful for systems to allow thresholding 
to discriminate signals from background noise. In this method, 
a threshold level is set, and signals above this level are amplified 
strongly, while signals below the threshold level are ignored. 
This allows systems to make decisions even in the presence of 
fuzzy, or noisy, inputs [27]. 

Many biological systems use a very sophisticated method of 
thresholding, in which the threshold level is not kept constant, 
but instead varies depending on the needs of the system at the 
time. For example, human eyes and many other detectors in liv-
ing organisms become more sensitive in low-signal conditions, 
and less sensitive in high-signal conditions [28,29]. 

Frequency filtering
One way to pull a signal out of a noisy background is to 

use amplitude filtering in a thresholding system, as described 
above. Another way is to use frequency filtering, in which only 
signals of a certain periodicity are amplified. Engineers are well 
familiar with this as “lock-in” detection. This also occurs in liv-
ing systems [30-32].

Control and signaling
All kinds of engineered systems have systems of control and 

regulation, by which conditions are detected and the system 
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reacts accordingly by sending signals to subsystems to act in 
response. Again, in biological systems there are many examples 
of all of these aspects of control: detection, decision, and sig-
naling to other systems to induce a response [33,34]. Control 
mechanisms are quite often discussed in terms of “decision 
making” by the system, i.e., considered responses to accomplish 
a goal.

Information storage
Control signals imply information. Biological systems also 

store information for use at much later times. In each case, the 
information “represents” a physical state that is not present 
[35,36]. 

It has sometimes been considered controversial to say that 
biological systems use information [37]. The systems biology 
revolution assumes that biological systems both use and store 
information in multiple contexts. Vincent, Bogatyreva, and 
Bogatyrev say [38],  “Whereas technology uses energy as the 
main means of solving technical problems, biology uses infor-
mation and structure.” Bill Bialek says [39], “The generation of 
physicists who turned to the phenomena of life in the 1930s 
realized that to understand these phenomena one would need 
to track not just the flow of energy (as in inanimate systems) 
but also the flow of information.” Allarakhia and Wensley say, 

The pharmaceutical industry has gradually evolved 
from a purely chemistry-based paradigm to an infor-
mation-based paradigm. With the completion of the 
human genome project, drug discovery knowledge is 
increasingly being viewed as part of systems biology. 
Systems biology does not focus on individual infor-
mation bits one at a time, but considers the behav-
ior and relationships of all units of information, in a 
particular biological system, from a functional per-
spective. [40] 

and 

This paradigm [of systems biology] is advancing the 
view that biology is essentially an information science 
with information operating on multiple hierarchi-
cal levels and in complex networks [13]. [Emphasis 
added.]

Kolch says,

What is systems biology, and more importantly what 
can it do for us? Here is the view of a biochemist 
who, while working on cellular signal transduc-
tion pathways, became increasingly astounded by a 
highly paradoxical observation. Signal transduction 
pathways collect numerous types of information in 
the form of hormones, growth factors or direct cues 
via contacts with neighbouring cells. These various 
types of information are transmitted, processed and 
integrated via the enzymes and their biochemical 
reactions that constitute the hardware of signalling 
pathways. In the end there is usually a specific and 

reproducible biological response that is appropriate 
to the stimulus and also fitting the higher context of 
the tissue or organism. This is the Holy Grail that 
teases us: understanding the biochemical basis of 
biological decision making. [41]

There are so many similar quotes in the systems biology lit-
erature that it is simply out of touch to argue that information 
is not a valid concept in biological systems. Systems biology 
has benefited in particular from new paradigms obtained from 
information and computer engineering.

Timing and synchronization
As in any computational system that executes actions in 

response to external inputs as well as internal stored informa-
tion, timing and sequence are crucial. Thus biological systems 
have clocks and an exquisite structure for synchronization of 
different processes, with triggers, delays, and several different 
clock cycles operating simultaneously [42,43]. 

Addressing
For signals to be useful, they must go to their intended target. 

Very rarely do biological signals simply float around until they 
hit their intended target by random motion. Instead, signals 
are typically labeled with addresses and carried to their targets, 
similar to the way that engineered systems such as the Federal 
Express delivery system efficiently get addressed objects to their 
intended goals [44-46]. While random thermal motion of 
molecules does occur and is an important factor in cells, this 
random motion is corralled and channeled into very specific 
uses by biological systems, such as thermal ratchets, which con-
vert random motion into unidirectional motion, and portals, 
which only allow objects with certain configurations to pass 
through.

Hierarchies of function
Every computer programmer and every electronics designer 

knows the virtue of modularity, that is, making devices that 
perform subtasks, which can then be bundled into higher-level 
structures that can themselves be bundled into even higher-level 
structures. Novice computer users are familiar with another ver-
sion of this: the ability to store things in folders, which can then 
be put in other folders, allowing easy handling of large sets. This 
same type of structure is found in biological systems [47-49]. 

Redundancy
Well-engineered systems have backup systems, or fail-safes, 

in case essential systems fail. The same occurs in biological sys-
tems, where it is often called “degeneracy” [50,51]. Redundancy 
occurs in biology at the obvious, organ level (two kidneys, two 
ovaries, etc.) as well as at the microscopic level. In many cases, 
it makes the most sense to turn on backup systems only when 
the main systems fail. This requires additional detection and 
triggering systems.  There is a design balance involved with 
redundancy, because too much redundancy requires too large a 
cost to carry unused systems. 
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Adaptation  
Perhaps the most sophisticated type of engineering is adap-

tive engineering (e.g. “smart materials”), in which a system is 
programmed to change its overall configuration in response to 
changes in the environment. 

This adaptive response may even extend to include processes 
long considered to be evolutionary processes. James Shapiro 
[52] of the University of Chicago, and Michael Deem of Rice 
University [53] have argued that much of the adaptation that 
we see in living systems today, such as bacterial immunity, is not 
due to random processes, but rather is due to very sophisticated 
problem-solving systems. These systems use randomization 
controlled by supersystems, just as the immune system uses 
randomization in a very controlled way. In bacterial immunity, 
as well as in the immune system and perhaps in many other 
systems, the system does not allow random changes and is quite 
stable (e.g., through error correction of genes), until certain 
outside stresses are detected. When external stress occurs, the 
system triggers a new process by which random solutions are 
generated. Only part of the system is allowed to vary randomly, 
while the rest is highly conserved. When a good solution is 
found by this highly parallel problem-solving method, a signal 
that detects success turns off the randomization. Deem suggests 
that this type of adaptive system, which now appears highly 
designed, is the product of much earlier, undetectable evolu-
tionary processes. In engineering terms, however, such systems 
would be considered highly sophisticated adaptive engineering.

GENERAL ENGINEERING ASSUMPTIONS IN 
SYSTEMS BIOLOGY

All of the above methods represent specific design elements 
that the field of systems biology has begun to tease out of the 
data. This progress has occurred as systems biologists start with 
basic engineering concepts and look for similar processes in 
biological systems. To do this involves several assumptions, or 
expectations, about the type of system one is looking at. These 
function as basic “laws” that make predictions about biological 
systems. 

Teleology
 The entire paradigm of systems biology is to look at systems 

and figure out what they are “for.” This is the paradigm of “top-
down” rather than “bottom-up” thinking—starting with a goal, 
and then working backwards to see what is needed and used to 
accomplish that goal. 

The language of teleology has become explicit and common 
in systems biology. Even the word “teleology” is becoming more 
acceptable. Bud Mishra says, “teleological questions…are likely 
to take the centre stage as we grapple with ultimate causes in 
biology” [11]. Arthur Lander writes in his essay, “A Calculus of 
Purpose,” which is worth an extended quotation,

Why is the sky blue? Any scientist will answer this 
question with a statement of mechanism: Atmo-
spheric gas scatters some wavelengths of light more 
than others. To answer with a statement of pur-

pose—e.g., to say the sky is blue in order to make 
people happy—would not cross the scientific mind. 
Yet in biology we often pose ‘why’ questions in which 
it is purpose, not mechanism, that interests us. The 
question ‘Why does the eye have a lens?’ most often 
calls for the answer that the lens is there to focus 
light rays, and only rarely for the answer that the lens 
is there because lens cells are induced by the retina 
from overlying ectoderm.

…As a group, molecular biologists shy away from 
teleological matters, perhaps because early attitudes 
in molecular biology were shaped by physicists and 
chemists. Even geneticists rigorously define function 
not in terms of the useful things a gene does, but by 
what happens when the gene is altered. Molecular 
biology and molecular genetics might continue to 
dodge teleological issues were it not for their fields’ 
remarkable recent successes. Mechanistic informa-
tion about how a multitude of genes and gene prod-
ucts act and interact is now being gathered so rap-
idly that our inability to synthesize such information 
into a coherent whole is becoming more and more 
frustrating. Gene regulation, intracellular signaling 
pathways, metabolic networks, developmental pro-
grams—the current information deluge is revealing 
these systems to be so complex that molecular biolo-
gists are forced to wrestle with an overtly teleologi-
cal question: What purpose does all this complexity 
serve?

…The study of such networks focuses not on the 
exact values of outputs, but rather on qualitative 
behavior, e.g., whether the network acts as a ‘switch,’ 
‘filter,’ ‘oscillator,’ ‘dynamic range adjuster,’ ‘pro-
ducer of stripes,’ etc. By investigating how such 
behaviors change for different parameter sets— an 
exercise referred to as “exploring the parameter 
space”—one starts to assemble a comprehensive 
picture of all the kinds of behaviors a network can 
produce. If one such behavior seems useful (to the 
organism), it becomes a candidate for explaining 
why the network itself was selected, i.e., it is seen as 
a potential purpose for the network. If experiments 
subsequently support assignments of actual param-
eter values to the range of parameter space that 
produces such behavior, then the potential purpose 
becomes a likely one.

…From these and many other examples in the litera-
ture, one can begin to discern several of the elements 
that, when present together, elevate investigations in 
computational biology to a level at which ordinary 
biologists take serious notice. Such elements include 
network topologies anchored in experimental data, 
fine-grained explorations of large parameter spaces, 
identification of “useful” network behaviors, and 
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hypothesis driven analyses of the mathematical or 
statistical bases for such behaviors. These elements 
can be seen as the foundations of a new calculus of 
purpose, enabling biologists to take on the much-
neglected teleological side of molecular biology. 
‘What purpose does all this complexity serve?’ may 
soon go from a question few biologists dare to pose, 
to one on everyone’s lips. [54]

Systems biology makes it an empirical fact that it is a useful 
paradigm for research to ask what things are “for,” and then 
work backwards to see how it is done. 

Optimization
That we expect living things to have a purpose is part of a 

broader assumption, namely that living systems are nearly opti-
mized for their expected modes of operation. In other words, in 
looking at any given part or unknown operation, one assumes 
that it has some purpose. This presumes that just about every-
thing in the cell does indeed have a role, i.e., that there is very 
little “junk.” 

Some systems biologists go further than just assuming that 
every little thing has a purpose. Some argue that each item is 
fulfilling its purpose as well as is physically possible.

Princeton biophysicist Bill Bialek has been an evangelistic 
promoter of this view in public talks around the country. Using 
examples such as the bat hearing (which has nanosecond resolu-
tion, as good as it possibly can be, given the physical constraints 
of sound waves in air) or embryo segmentation signaling (which 
has single-molecule detection capability), he argues that nearly 
all biological systems are operating nearly the best they can. 
If there are multiple functional goals,  optimization exists as 
the best possible compromise of tradeoffs, and if there are no 
competing goals, then only the physical constraints of natural 
law limit the optimization. He argues this is not just bare con-
jecture, but experimentally confirmed by numerous successful 
quantitative predictions; it is a “real” theory of biology:

Although sometimes submerged under concerns 
about particular systems, the idea that information 
flow is optimized provides us with a candidate for a 
real theory of biological networks, rather than just a 
collection of parameterized models. [39]

Realizing … optimal information capacity would 
require that the dynamic range of TF [transcription 
factor] concentrations used by the cell, the input/
output relation of the regulatory module, and the 
noise in gene expression satisfy certain matching 
relations, which we derive. These results provide 
parameter-free, quantitative predictions connecting 
independently measurable quantities. Although we 
have considered only the simplified problem of a 
single gene responding to a single TF, we find that 
these predictions are in surprisingly good agreement 
with recent experiments. [55]

The assumption of optimization allows for quantitative, 

predictive modeling of biological systems as never before 
because it allows all of the systems engineering methods of 
constrained optimization to be used [56,57].  One can define 
the constraints, make a guess at the functional goal (teleology), 
and then run a numerical model to achieve that goal within 
the constraints. In mathematical terms, it allows one to set first 
derivatives equal to zero. When there is more than one goal, 
the relative cost of tradeoffs between different goals can be cal-
culated. As J.R. Banga puts it in his article, “Optimization in 
computational systems biology,”

The key elements of mathematical optimization 
problems are the decision variables (those which can 
be varied during the search of the best solution), the 
objective function (the performance index which 
quantifies the quality of a solution defined by a set 
of decision variables, and which can be maximized 
or minimized), and the constraints (requirements 
that must be met, usually expressed as equalities and 
inequalities) [58].

Another way to put it is that the exceedingly complex systems 
of biology are assumed to be complex because that is the best 
way to achieve the purposes of the organism. The systems are 
not assumed to have many useless or dysfunctional parts.

Many, of course, such as Avise [59], have argued strongly that 
biological systems are not generally optimized, and that this is 
evidence against intelligent design. As I have argued previously 
[60], some degree of sub-optimality is to be expected in any 
engineered system; we may conclude that a system has less than 
optimal design either 1) because we do not know what all the 
design goals were (e.g., the hubcaps of a Mercedes Benz may 
not be as aerodynamic as we would like, but may be designed 
to look pretty), or 2) because systems have partially decayed 
over time. The question of optimality is still under debate, but 
the trend of systems biology is toward ever more respect for the 
near-optimality of living systems.

Robustness
A corollary of good design is robustness: the ability of a sys-

tem to withstand changes in its environment and operate stably. 
This is also an assumption of systems biology. As Lander writes,

Because real organisms face changing parameter val-
ues constantly—whether as a result of unstable envi-
ronmental conditions, or mutations leading to the 
inactivation of a single allele of a gene—robustness is 
an extremely valuable feature of biological networks, 
so much so that some have elevated it to a sort of 
sine qua non. Indeed, the major message of the von 
Dassow article was that the authors had uncovered a 
‘robust developmental module,’ which could ensure 
the formation of an appropriate pattern even across 
distantly related insect species whose earliest steps of 
embryogenesis are quite different from one another. 
[54]

Robustness is observed not only in the ability of a single 
organism to operate in a changing environment, but in the 
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ability of a type of organism to endure in multiple forms and 
different ecosystems. This is dramatically seen, for example, in 
certain types of insects that have very similar body plans even 
though they are very different sizes (by orders of magnitude). 
This may not seem too surprising, but is actually quite tricky 
to accomplish. Each egg starts as an undifferentiated globule, 
and becomes differentiated into segments of the insect body by 
a chemical signal that starts from one end of the egg and trig-
gers certain cells to differentiate when the signal drops below a 
preset concentration. If the egg is bigger, and if the chemical 
signal stays the same, it will diffuse the same distance along the 
egg, which will be proportionally less of its length. This would 
imply that the size of the segments will not scale with the size 
of the egg, unless the chemical signal is altered to also scale with 
the size of the egg. This, of course, is what happens, although 
the chemical signal is produced by a different mechanism in the 
body of the mother, another example of apparent fine-tuning. 

Closely related to the concept of robustness is the concept 
of “overdesign.” Some systems may be designed to continue to 
operate under conditions far from the expected normal operat-
ing conditions. Typically the subsystems that are overdesigned 
are those that are essential for the operation of the whole sys-
tem. This occurs at all levels in biological systems. 

Reverse Engineering
All of these engineering paradigms applied to biology have 

the characteristics of “reverse engineering,” a major goal in sys-
tems biology, as evidenced by the frequent explicit use of this 
term [38,58,61-65].2 Reverse engineering is the process, often 
done in industry, of taking a system designed by someone else 
and trying to figure out how it works. In the context of biology, 
reverse engineering of living systems has the potential payoff of 
leading to new designs of systems based on the designs discov-
ered in biology. Thus systems biology is strongly coupled to the 
field of synthetic biology, in which new variations of biological 
systems are created for specific human goals. 

Reverse engineering assumes not only that biological systems 
are as good as ones designed by humans, but may actually be 
better in many cases, so that we can learn new tricks for good 
design by studying existing biological systems. 

The Language of Design
All of the above can be classed under the heading of “design 

language,” and authors in the field are not reticent to use the 
word “design.” For example, Braillard writes

“I present an example of what can be called design 
explanation and show how it differs from classical 
mechanistic explanations. First, it is a non-causal 
kind of explanation that does not show how a func-
tion is produced by a mechanism but illustrates how 
a system’s function determines its structure. Sec-
ond, it points to general design principles that do 
not depend much on evolutionary contingency…
Although some aspects of systems biology fit the 

2 A literature search on the term “reverse engineering” gives dozens of references in 
addition to these references. 

mechanistic framework, explanations used by work-
ing scientists do not always correspond to the tra-
ditional definitions of mechanistic explanations 
provided by philosophers.… I refer to this kind of 
explanation as design explanation” [66]. [Emphasis 
in original]

Soyer goes beyond this, asking,

Can we employ understanding from specific cases to 
decipher “design principles” applicable to all biologi-
cal systems? Providing an affirmative answer to this 
question is one of the key prospects of systems biol-
ogy [67].

An older generation sometimes used the language of design, 
but felt it could be treated as a merely aesthetic concept without 
scientific impact. Francis Crick said, “Biologists must con-
stantly keep in mind that what they see was not designed, but 
rather evolved” [68]. Dawkins famously said, “Biology is the 
study of complicated things that give the appearance of having 
been designed for a purpose” [69]. The above survey of recent 
systems biology, however, shows that the concepts of design are 
not merely colorful language, but deeply impactful paradigms. 

CAN WE COUNT THE NEW PARADIGM IN 
SYSTEMS BIOLOGY AS A SUCCESSFUL 
PREDICTION OF ID?

It goes without saying that a paradigm in which biolo-
gists think like engineers, that is, by looking for design when 
approaching living systems, is consistent with a belief that a 
creator designed the processes in living systems and instituted 
them, whether by miraculous intervention or by fine-tuning in 
the structure of physical law. “Reverse engineering” would seem 
to imply that there was “engineering” in the first place. Sys-
tems designed by intelligent humans are characterized by the 
property that their parts are there for a purpose; the more well-
designed something is, the more we find that each little part 
has some function. It is reasonable to expect that the creator’s 
intelligence is like ours, and even better than ours, and so every 
little part of the systems should play an important role in some 
function.

The new systems biology movement did not grow out of the 
intelligent design (ID) community, however. Its major players 
have explicitly Darwinist commitments, in the main, and the 
field has remained relatively uncontroversial, from a political 
and social standpoint, because almost all the authors in the field 
attribute the good design to undirected evolution. The degree 
to which some authors go to remove any reference to a creat-
ing designer from the appearance of design is sometimes almost 
comical, as in the following quote:

Metabolic networks, which have been extensively 
studied for decades, are emblematic of how evolu-
tion has sculpted biologic systems for optimal func-
tion…Biochemistry textbooks describe metabolism 
as having evolved to be ‘highly integrated’ with the 
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appearance of a ‘coherent design.’ Here we explore 
both important ‘design’ (with no implication of a 
‘designer’) features of metabolism and the sense in 
which stoichiometry itself has highly organised and 
optimised tolerances and tradeoffs (HOT) for func-
tional requirements such as flexibility, efficiency, 
robustness and evolvability, constrained by conser-
vation of energy, redox and small moieties” [70]. 
[Emphasis added.]

Biological systems are called “smart,” [38] “sophisticated,” 
[71] and “clever” [72] but all this cleverness is assumed to arise 
from random causes and natural selection. 

There are two main reasons why the systems biology move-
ment has arisen. The first one is that biology remains firmly 
an empirical field, and the data increasingly demand a design 
approach. While Darwinist presuppositions might have led 
many scientists to expect to see a lot more “junk” in living sys-
tems, most biologists are more committed to going where the 
data leads than they are to particular evolutionary models. The 
systems biology approach is advancing because it has led to suc-
cessful, quantitative predictions, and that is enough for most 
biologists, even though some have expressed discomfort with 
its teleological language. 

The second reason why the good design paradigm in systems 
biology has flowered is that there is a long history in biology 
and medicine of expecting each part of living systems to have a 
function. This expectation, or paradigm, goes back at least as far 
as William Harvey, considered the father of modern medicine, 
who described his discovery of the system of circulation in the 
body as follows:

 So Provident a Cause as Nature had not so placed so 
many Valves without design; and no Design seemed 
more probable than that, since the Blood could not 
well, because of the interposing Valves, be sent by 
the Veins to the Limbs; it should be sent through 
the Arteries, and Return through the Veins, whose 
Valves did not oppose its course that way [73].  

The examination of the bodies of animals has always 
been my delight; and I have thought that we might 
thence not only obtain an insight into the lighter 
mysteries of Nature, but there perceive a kind of 
image or reflex of the omnipotent Creator himself 
[74].

Although there have been many claims of “vestigial,” i.e. 
non-functioning or non-optimal organs, by and large medicine 
has not proceeded under the assumption that much of the body 
is vestigial. Medicine and biology have maintained the working 
hypothesis of Harvey that if there is something there, it probably 
has a purpose and is not junk. This assumption came originally 
from an explicitly theistic design paradigm. Systems biology, 
and biology in general, can be seen as a longstanding successful 
outworking of this original explicit good-design hypothesis of 
Harvey and other Christians like him. Biology research, espe-
cially human biology in medicine, preceded Darwin and owes a 

debt to many others besides him.
One can ask, on first principles, if there had not been this 

long history of empirical success in looking for the purpose of 
unknown parts of living systems (starting with Harvey), one 
would expect a random-evolution theory to predict a high degree 
of optimization and systems integration. To find everything so 
extremely well-optimized and integrated seems antithetical to 
the expectation that evolution progresses by many blind stabs 
in the dark that are only weeded out over time. 

As discussed in the introduction, there are mechanisms 
within the standard Darwinist evolutionary scenario that can 
increase optimality and efficiency. For example, if an organ-
ism carries around inefficient and useless stuff, it will be less 
fit and more likely to die, allowing more efficient organisms 
to gain more of a fraction of the population. However, most 
evolutionists over the past 150 years have tended to argue 
that evolution leads us to expect “bad design” of one type or 
another, with lots of “junk,” “vestigial” organs, or other useless 
stuff [75,76], and elements which seemed to be useless have 
been used as evidence of undirected evolution. Only recently 
has the term “junk DNA” begun to be disfavored, as functions 
for noncoding DNA have been found in more and more cases 
[77]. (The final nail in the coffin has probably been given by the 
ENCODE project [78-80], although some still argue strongly 
that much DNA is “junk,” based on the observation that some 
small organisms have very little of it [8,81].)  Some have tried 
to argue that biologists did not really view junk DNA as “junk,” 
but I have attended biophysics and biology talks for 30 years, 
and I can attest that in the 1980s many speakers really did make 
the argument that the existence of junk DNA proves that liv-
ing systems are messy and not optimized and therefore do not 
reflect the work of a creator. Avise’s recent book [59], while 
more sophisticated, makes essentially the same point.3 

The reason for this expectation, from a Darwinist standpoint, 
is that although the standard model of evolution does have 
some pressure toward optimization, there is a “catch-22” which 
should prevent a high degree of optimality.  If the energy cost 
of carrying useless or suboptimal structures is too great, then 
no novel structures will ever be generated. Assuming that new 
structures with novel function must be generated from several 
separate parts, each of which is not by itself beneficial to sur-
vival, a species must carry around various useless or suboptimal 
parts for some time, until all the parts are in place for the new, 
optimized function.  In addition, natural selection would seem 
to reward the first success more than the most efficient success. 
Any change which decreases the efficiency of function, even if 
it is a step toward an ultimately more optimal solution, will be 
selected against. 

It is beyond the scope of this paper to survey the various 

3 Avise lists “fallibility” (the fact that the systems can break down), “baroqueness” 
(unnecessary extra complexity), and waste (redundancy) as his key evidences that 
life cannot be designed. Clearly, no system designed by humans has any of these 
three properties! As pointed out by C.G. Hunter [82], those opposed to the infer-
ence of intelligent design of life frequently invoke theological assumptions about 
how God would act; these assumptions raise the bar significantly above the simple 
concept of design to a notion of near-perfect, ideal design. Apologists who embrace 
intelligent design generally accept that decay and “devolution” occur, that baroque 
life, like baroque art, may be pleasing to God, and that absolutely maximizing ef-
ficiency may not be the only design goal. 
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pathways to optimization and good design available to evolu-
tion; for example, there have been various proposals of how to 
cross the “fitness valleys” between different local fitness maxima, 
including “annealing” (random shake-ups of the environment) 
and fortuitous combination of two or more separate functions 
[83].  It is a historical fact, however, that evolutionary theory 
has tended to lead to the expectation of bad design, junk, and 
sub-optimality, while those following the intelligent design per-
spective of Harvey have tended to look for a purpose for every 
little element of living things.  

The fact that the design paradigm in systems biology did not 
come directly from researchers associated publicly with the ID 
movement is not surprising. At present, the ID research effort is 
tiny: literally half a dozen or less researchers, none of whom has 
public funding; at present they can produce about 2-3 papers 
per year using private funding. The secular systems biology 
effort, by contrast, has thousands of well-funded researchers 
and labs. Yet despite the political incorrectness of the intelligent 
design movement, “design” has become a successful paradigm 
within the secular biology world, as long as “intelligent” is not 
added.  

CONCLUSION
For many who oppose the ID movement, saying that living 

systems “look designed” is a vacuous statement, amounting to 
saying “I don’t understand it; therefore I will leap to invoking a 
miracle.” The systems biology field shows, however, that saying 
things “look designed” is a meaningful statement with quanti-
tative, predictive implications. Even if one is not comfortable 
with the metaphysics of saying that what looks designed, is 
designed, it is time to put to rest the objection that saying life 
“looks designed” is an empty statement.  

It has become clear in the past ten years that the concept of 
design is not merely an add-on meta-description of biological 
systems, of no scientific consequence, but is in fact a driver of 
science.  A whole cohort of young scientists is being trained to 
“think like engineers” when looking at biological systems, using 
terms explicitly related to engineering design concepts: design, 
purpose, optimal tradeoffs for multiple goals, information, con-
trol, decision making, etc. This approach is widely seen as a 
successful, predictive, quantitative theory of biology.  

Perhaps just as striking is the fact that the new systems biolo-
gists by and large make almost no reference to the history of the 
organisms. In many cases of “bad design” we are familiar with, 
the history matters quite a bit. For example, the “evolution” of 
Windows operating systems through many versions is widely 

considered bad, or at least highly suboptimal, design. To under-
stand Windows properly, a good computer technician must 
understand all the “legacy” issues—such-and-such was done to 
allow for backwards compatibility with software running under 
previous versions, some sections of code were copied wholesale 
from previous versions and aren’t really optimized for new ele-
ments, etc. In the same way, a person encountering bad home 
repairs often must sort through the history—this layer of wiring 
was put on top of old wiring without pulling the old stuff out, 
etc. It stands to reason that a theory that insists on the relevance 
of a history of variations, namely Darwinism, would have at 
least as much need to understand previous stages. Yet in mod-
ern systems biology, this type of analysis is almost completely 
absent, except in small variations that occur at the lowest level. 
We thus have a program in which the concepts of good design 
are quite useful, and the concepts of historical previous versions 
are largely irrelevant to the task at hand.4

This paradigm is clearly consistent with a belief in intelligent 
design. The question is whether it is also consistent with a belief 
in Darwinian evolution, given the optimization mechanisms 
that are known to exist in that framework.  We can say generally 
that the distinction between the two is not an all-or-nothing dif-
ference. The good-design paradigm (ID) allows for mechanisms 
that give suboptimality, and the Darwinian paradigm includes 
forces that lead to increase of optimality.  But as discussed in the 
introduction, the degree of optimality, or good design, which we 
expect to occur depends quite a bit on which model we adopt. 
Historically, Darwinians have argued that suboptimality and 
“junk” are evidence for their view.

Our assessment of which paradigm better describes biological 
systems will depend in large part on whether we view biological 
systems as mostly kludgy and full of junk, with a few opti-
mized parts, or whether we view them as highly designed and 
optimized, with a few sub-optimal parts. The systems biology 
community is rapidly trending toward the latter view, largely 
because it has proven useful. 

Many have demanded that the intelligent design paradigm 
must come up with a successful, predictive, quantitative pro-
gram for biology, but it seems that such a program already exists 
right under our noses.  

4 As discussed above, J.A. Shapiro and M. Deem argue that adaptations seen today, 
such as bacterial immunity and other adaptations to environmental stress, are the 
product of a non-changing system that uses controlled randomization as a solution 
method. Deem has argued [53] that previous structures that gave rise to this system 
no longer exist and therefore cannot be studied.
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