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Abstract

The hierarchical classification of life has been claimed as compelling evidence for universal common ancestry. However, research has
uncovered much data which is not congruent with the hierarchical pattern. Nevertheless, biological data resembles a nested hierarchy
sufficiently well to require an explanation. While many defenders of intelligent design dispute common descent, no alternative account
of the approximate nested hierarchy pattern has been widely adopted. We present the dependency graph hypothesis as an alternative
explanation, based on the technique used by software developers to reuse code among different software projects. This hypothesis
postulates that different biological species share modules related by a dependency graph. We evaluate several predictions made by
this model about both biological and synthetic data, finding them to be fulfilled.
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INTRODUCTION

Darwin cited the hierarchical classification of life as evi-
dence for his theory [1], and the classification has con-
tinued to be cited as a central prediction of evolutionary
theory [2]. However, modern research, especially in the
area of molecular data, has complicated this picture.
Prokaryotes do not fit a hierarchical scheme, leading
Doolittle [3, p. 2226] to state: “Indeed, for prokaryotes,
molecular data have falsified the [tree of life] hypothesis.”
Even amongst more complex lifeforms, data exist which
are not congruent with the hierarchical pattern [4-8].
Some push for embracing a view of evolution no longer
constrained by the tree of life [9]. Those who do not
consider the tree of life falsified nevertheless hold to a
modified version of it. Mechanisms have been added to
explain deviations from the hierarchy such as horizon-
tal gene transfer, incomplete lineage sorting, differential
gene loss, gene resurrection, gene flow, and convergent
evolution. Darwin referred to a “single progenitor” as the
common ancestor of a clade, but, according to modern
evolutionary theory, “Rather, the last universal common
ancestor may have comprised a population of organisms
with different genotypes that lived in different places at
different times. [10, p. 220]”

However, the nested hierarchy pattern has not been
abandoned. Some push back on the widespread infer-
ence of horizontal gene transfer [11, 12]. While Doolittle
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argues that the tree of life is a falsified hypothesis, he
still argues that macroscopic life’s fit to a hierarchy con-
firms evolutionary theory, [3, p. 2224]. A number of
papers have attempted to quantitatively support com-
mon descent by showing a hierarchical signal in biological
data [10, 13-15]. Defenders of evolutionary theory still
commonly invoke the nested hierarchy as a successful
prediction of and compelling evidence for common de-
scent.

It may seem contradictory to both call for evolution-
ary theory to move beyond the tree of life and continue
using the nested hierarchy as evidence for common de-
scent. But the question is not whether life forms a nested
hierarchy pattern, but rather to what degree life resem-
bles a nested hierarchy. Life exhibits an approximate
nested hierarchy pattern rather than forming an exact
nested hierarchy. Even if the resemblance is weak or the
approximation very loose, it is still undeniably present
and thus must be explained. Defenders of common de-
scent argue that even if many other mechanisms compli-
cate the picture, the resemblance to a nested hierarchy
is still best explained by common descent.

Intelligent design advocates critique evolutionary the-
ory’s account on a number of grounds [16-19]. Regardless
of the merit of these critiques of common descent, ad-
vocates of design are left with a question: how do they
explain the approximate hierarchical pattern? While
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some hold to common descent [20, 21], the more com-
mon position is separate ancestry [17, 22, 23]. They
explain similarities among species by appealing to func-
tional constraints or common design instead of common
descent [17, 22]. Many species face similar functional
constraints and thus must solve some problems in sim-
ilar ways. Common design leads to similarity because
designers frequently reuse components, modules, and so-
lutions leading to similarity. As Nelson [17] writes: “An
intelligent cause may reuse or redeploy the same mod-
ule in different systems, without there necessarily being
any material or physical connection between those sys-
tems. Even more simply, intelligent causes can generate
identical patterns independently.” Intelligent design pro-
ponents who hold to separate ancestry have no problem
explaining similarities in biological organisms.

Nevertheless, while similarity per se can be explained
by functional requirements and common design, this
does not explain the approximate hierarchy. Defenders
of common design argue that the products of design tend
to fit hierarchical patterns because, “Common design
predicts re-usage of parts in a non-random manner that
fulfills design constraints required by the system. [24]”
However, no hypothesis has been put forth to explain
why this “non-random” re-usage of parts would exhibit
the appearance of a nested hierarchy pattern.

Even if the defenders of common design had an ex-
planation for the approximate hierarchical pattern, this
would not be sufficient. Such an explanation would al-
most certainly be less parsimonious than common descent
in accounting for the hierarchy and just as unparsimo-
nious as common descent in accounting for the exceptions
to the hierarchy. The only way a new explanation can
claim to be a better explanation than common descent
is if life exhibits another pattern, and has only been
interpreted as an approximate hierarchy because of the
similarity of the two patterns. An explanation of the true
pattern could be more parsimonious than common de-
scent overall because it would avoid the need for ad-hoc
assumptions to explain deviations from the hierarchical
pattern. Some have tried to propose such extended pat-
terns [23, 25], but in practice the predicted pattern is
just one of a nested hierarchy with deviations from that
hierarchy. Deviations from a pattern do not constitute a
pattern; there must be a pattern to the deviations. Since
no explanation has been put forward that demonstrates
such an extended pattern, no explanation so far can
claim to be a better explanation for the approximate
hierarchy than common descent.

We propose a new hypothesis to explain the approx-
imate nested hierarchy pattern: the dependency graph.
This hypothesis is drawn from the techniques used to
reuse code in software development. Briefly, instead of a
species descending from a single ancestral species (at least
in the conventional account), each depends on multiple
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modules which themselves may depend on other mod-
ules. This brings together many of the ideas proposed
by design-oriented critics of common descent. It uses the
idea of common design by having modules reused in dif-
ferent species. It also draws on functional constraints, by
having the valid combinations of modules restricted by
which modules depend on other modules. Furthermore,
it predicts an extended pattern which is the result of the
proposed dependency graph mechanism.

The primary purpose of the current paper is to in-
troduce this new hypothesis, with a goal of introducing
a foundation for future research. We do test some pre-
dictions of the hypothesis. However, given that this is
the first evaluation of the hypothesis, it is limited and
subject to various assumptions. Future research will
be required to address these limitations. Furthermore,
many unanswered questions will be raised by the ideas
presented in this paper, and fleshing out those answers
is also left to future research.

Typically, advocates of separate descent nevertheless
allow for some degree of common descent. For example,
many advocates of separate ancestry would still hold that
the members of Canis or Felis descend from a common
ancestor. For the purposes of this paper, we assume
that all species that we investigate were independently
designed. The databases evaluated contain at most a
few hundred metazoan species, and as such likely con-
tain few examples of species that would descend from a
common ancestor under limited common ancestry. Any
consideration of the effect of limited common ancestry is
left to future research.

When considering common descent, we assume a con-
ventional understanding of common descent closer to
Darwin’s “single progenitor” than to Theobald’s “popu-
lation of organisms with different genotypes that lived in
different places at different times.” This paper restricts
its consideration to the metazoans where such a con-
ventional understanding is still typically thought to be
approximately correct. In particular, we assume that all
members of a metazoan taxonomic category trace their
ancestry to a particular population living at a particular
time with relatively homogeneous genomes. Every new
species arises by the splitting of an existing species into
multiple species, leaving every species with a single an-
cestral species. We assume that horizontal transfer of
genetic information is sufficiently rare that it can be ne-
glected in understanding the overall pattern of metazoan
life.

DEPENDENCY GRAPHS

It is common for one thing to require or depend on an-
other. It is impossible to learn calculus unless you first
know algebra: calculus depends on algebra. A modern
kitchen cannot be added to a building that lacks plumb-
ing: kitchens depend on plumbing. A society cannot
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invent the internet without first inventing computers:
the internet depends on computers. These dependency
relationships can be found in many spheres.

While many spheres of life implicitly involve depen-
dency relationships, in software development they are
made explicit. Each collection of code, termed a module,
will depend on other modules in order to perform its task.
For example, if a software developer needs their program
to download a file from the internet, they will not write
the large amount of code necessary to perform this task.
Instead, they will add a dependency on a module which
already has the necessary code and reuse that code.

The structure that results from considering all the
modules and the dependencies between them is called
a dependency graph. The dependency graph of two
JavaScript software modules, jsdom and node-gyp, is
depicted in Figure 1. These modules perform two very
different tasks, jsdom simulates part of a web browser
and node-gyp compiles, or builds, software. Neverthe-
less, both modules depend on the request module, which
downloads files from the internet, and consequently share
both the request module and many modules depended
on by the request module.

Common descent postulates that life is related by a
tree, such as the one depicted for a selection of mam-
malian species in Figure 2. In contrast, the dependency
graph hypothesis postulates that life is based on a de-
pendency graph as depicted in Figure 3. Every species is
a top-level module; nothing else depends on a species. A
species depends on a variety of other modules, each pro-
viding some of the genes necessary for the final genome
of the species. A module may contribute a single gene,
or a large collection of genes. The arrows are reversed
between the tree and the graph because in the tree an
ancestral species splits into child species, but in the graph
the species depend on modules, reversing the direction
of the relationship.

Crucially, every module may depend on other mod-
ules. For example, the Carnivora module depends on
the Laurasiatheria module. As a consequence, the genes
contained in the Laurasiatheria module are also inher-
ited by all species that depend on the Carnivora module.
So all Carnivora species are Laurasiatheria species by
virtue of that dependency relation. Thus we provide an
alternative explanation for the nesting pattern observed
in biology.

Both theories have important similarities. Taxo-
nomic categories appear in both: in common descent
they are represented by their most recent common ances-
tral species. In the dependency graph, they are modules.
Both can explain the nested relationship of taxonomic cat-
egories. In common descent, this is because one species
descended from another. In the dependency graph, this
is because one module depends on another.

They differ on one crucial point: a species convention-
ally has one ancestral species, but a module typically has
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multiple dependencies. For example, see “echolocation”
and “marine” in Figure 3. All marine species depend on
a marine module, and the echolocating species depend
on the echolocation module. The dependency graph is
essentially a tree with extra flexibility; the modules can
explain genes shared between species thought to be only
distantly related by common descent. A module is not
restricted to reusing code from a single source, but can
freely reuse from multiple sources. Compare this to com-
mon descent where each species must almost exclusively
draw from a single source: its ancestral species.

If the true explanation for life’s pattern of reuse is
the dependency graph, why has it been interpreted as a
nested hierarchy? According to the dependency graph
hypothesis, the tree is simply a subset of the true de-
pendency graph. Attempts to determine the correct tree
of life have simply been uncovering the tree which best
approximates the entire dependency graph. This works
because some modules contribute much more similar-
ity to species which depend on them than others. Life
resembles a nested hierarchy because a nested hierarchi-
cal structure is similar enough to a dependency graph
structure to approximate it.

However, while the nested hierarchy structure resem-
bles a dependency graph it is not exactly the same. The
dependency graph hypothesis does not simply predict the
same pattern as common descent, nor common descent
with unspecified deviations from the general pattern.
Instead, it predicts instances of module reuse across tax-
onomic boundaries. Examples include the molecular con-
vergence found in echolocating mammals [26] or marine
mammals [27, 28]. Others have argued that mammals
in general show a similar level of convergence [29, 30].
Moreover, virtually all sequenced genomes contain genes
which have been interpreted as having arrived by hori-
zontal gene transfer due to not fitting the hierarchical
pattern [8, 11, 12, 31]. If the dependency graph hy-
pothesis is correct, we should expect to find numerous
examples of modules that appear to have been reused
across taxonomic boundaries.

The dependency graph hypothesis draws on the idea
of common design, by having reusable modules, as well
as functional requirements, by restricting the reuse of
modules via the dependency graph. The concept of a
dependency graph draws not from an ad-hoc attempt to
explain the data, but the actual process used to develop
software. It is based on behaviors and practices that
intelligent agents are known to use, not simply processes
necessary to explain the data.

It is conceivable that a designer might follow a de-
pendency graph purely out of the intrinsic constraints
of design. However, it is more compelling if we adopt
the working hypothesis that DNA is the product of a
compiler. A compiler is a program used by software
developers to automate, as much as possible, the process
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Figure 1: jsdom and node-gyp Dependency Graph. The dependency graph of jsdom and node-gyp. Green boxes are modules used by
jsdom. Purple modules are used by node-gyp. Orange modules are used by both. Modules of particular interest have been labelled with the
name of that module. The arrows go from a module to other modules that it depends on. doi:10.5048/BIO-C.2018.3.f1
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Figure 2: A subset of the mammalian tree of life. Rectangles are extant species, and ellipses are postulated ancestral species, the most
recent common ancestor (MRCA) of each taxonomic category. doi:10.5048/BIO-C.2018.3.f2
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Figure 3: A possible subset of the mammalian dependency graph of life. Rectangles are species, and ellipses are postulated modules.
The orange elipses are modules postulated in addition to the standard taxonomic modules. doi:10.5048/BI0-C.2018.3.13

of software development. It integrates the modules, per-
forms optimizations, and determines the precise sequence
of bytes that constitute a program. We postulate that a
similar automated process was used to construct DNA.

PREDICTIONS

As mentioned, the dependency graph predicts a pattern
similar to but distinct from common descent. Is this
prediction actually borne out by the data? For this pa-
per, we will focus on the distribution of genes amongst
various species. There are a number of different tech-
niques to represent this data. The simplest is to record
the presence or absence of each gene family in each
species [32-34]. Some models extend this idea by taking
into account the number of members of a gene family,
not simply their presence or absence [35-39]. Quantita-
tive evaluations of common descent often consider exact
DNA sequences [10, 13, 15]. For this study, we adopt the
simplest representation: the presence/absence of gene
families, leaving other representations and data to future
research.

This choice is partially made for simplicity: as this
is the first introduction of the dependency graph as
an account for the pattern of life, we wish to avoid
introducing any unnecessary complication. However, it
also provides a number of advantages. This approach
allows incorporating data from the whole genome and
many species. It does not require either focusing on a
few selected genes or a small selection of species. By
operating at the resolution of a gene family, it will also
not be affected by processes which produce within-family
deviations from the standard tree. Addressing the gene
family sizes or exact sequences is left to future research.

Given the distribution of gene families amongst
species, what prediction does the dependency graph make
about it? Firstly, we would expect that the biological
data should fit a dependency graph better than a tree.
We will evaluate the fit by using Bayesian model selection
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as described in the section below. The essential idea is
that the better fitting model is the one that explains the
data with least complexity, quantified as improbability.
If the dependency graph hypothesis is correct, postulat-
ing modules should help explain otherwise improbable
distributions of genes. On the other hand, if the depen-
dency graph hypothesis is incorrect, data that deviates
from the tree should not fit the graph either, and thus
should not be made more probable by the hypothesis.

Furthermore, the dependency graph should not be
too similar to the tree of life. We expect the tree to be
present as a subset of the dependency graph, explain-
ing how life has been interpreted as a hierarchy. The
dependency graph hypothesis predicts that there will be
many modules which do not correspond to a taxonomic
category, and a substantial portion of the genes should be
attributed to these non-taxonomic modules rather than
taxonomic modules. On the other hand, common descent
predicts there would be few non-taxonomic modules, and
most genes would remain attributed to the taxonomic
modules. Therefore, if the inferred dependency graph is
simply the tree of life with a few minor additions, that
would suggest that the dependency graph hypothesis is
incorrect.

The method for determining which model is the better
fit should be able to identify tree patterns as well as
dependency graphs. In particular, we should be able
to look at data produced by models or simulations of
common descent, and see that they exhibit the tree
pattern, not the pattern predicted by the dependency
graph. Note that we do not claim that the dependency
graph is the only way to produce data which fits the
dependency graph better than a tree; given the wide
variety of mechanisms that might be invoked along with
common descent, it would not be surprising that some
combination of those could produce data which fit a
dependency graph better than a tree. In such a case, we
would need to separately compare how that alternative
evolutionary hypothesis performs against the dependency
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graph. But what would be surprising is if a model of
common descent following a strict branching process
nevertheless fit a dependency graph better than a tree. If
it did, this would suggest that just about any dataset will
fit the dependency graph better than a tree, no matter
how it was produced, and would indicate that the model
selection method is broken. Thus, we predict that as
long as the process of common descent is approximately
a strict branching process, then it will fit a tree better
than a dependency graph.

Additionally, if we analyze a dependency graph in-
ferred from data known to have been produced by com-
mon descent, it should remain similar to the tree. Any
data that resembles modules should be a statistical fluke
and thus rare and insignificant. There should be rela-
tively few non-taxonomic modules inferred from the data.
Most genes should remain attributed to the taxonomic
modules.

The dependency graph hypothesis derives from de-
pendency graphs used in software development. Conse-
quently, we can offer predictions about software produced
utilizing a dependency graph. Software does not have
an exact equivalent to gene families, but we can take
the nearest analogue and analyze software projects in
the same manner as genomes. Like the biological data,
the dependency graph hypothesis predicts that software
should readily fit a hierarchical pattern, and yet fit the
dependency graph better than a tree. In order for the
dependency graph to be the correct explanation of the
pattern of life, the proposed pattern must plausibly be
mistaken for a hierarchical pattern. Consequently, it is
necessary that software can be shown to fit a tree better
than a null hypothesis. Moreover, the software must fit
a dependency graph better than a tree.

To summarize, we have the following predictions:

o Biological data should fit the dependency graph
better than a tree.

e Data produced by a process dominated by common
descent or branching should fit a tree better than
a dependency graph.

o Inferred graphs for biological data should contain
many more non-taxonomic modules with many
more genes than dependency graphs inferred from
such data known to have been produced by common
descent.

o Software should fit a dependency graph better than
a tree, but a tree better than a null model.

Parsimony and Fitting

Most of the predictions require evaluating whether the
data is a better fit to a tree or to a dependency graph.
This paper utilizes Bayesian model selection to evaluate
which model is a better fit. Many readers will be more
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familiar with statistical hypothesis testing which involves
rejecting a null hypothesis on the basis of a p-value.
However, this approach has been the subject of much
criticism [40, 41], albeit with some defense [42].

Bayesian model selection proceeds by defining a model
which assigns a probability to each possible set of species
which could share a gene family. For example, common
descent will assign higher probabilities to gene families
being found in groups of species corresponding to tax-
onomic groups. On the other hand, the dependency
graph will assign higher probabilities to gene families
being found in groups of species that depend on the same
modules. We evaluate the fit of the model to the data
by assessing which model assigns a higher probability to
the data.

For example, Gallus gallus (chickens) and Meleagris
gallopavo (turkeys) are closely related birds, and thus
are expected to share many genes by common descent.
On the other hand, despite the similarity in names, Tae-
niopygia guttata (zebra finch) and Danio rerio (zebra fish)
are only distantly related because one is a bird and the
other a fish. As such, it should be relatively improbable
to find genes shared only between these two species. But
according to the Hogenom [43] dataset, there are nine-
teen gene families found only in this pair of species. The
dependency graph model can assign high probabilities
to both of these combinations by postulating a module
shared between the pairs of species.

The astute reader will realize that a dependency
graph model has an advantage over common descent
in fitting the data because it can postulate modules to
explain otherwise inexplicably distributed gene families.
Consequently, it may seem that the dependency graph
model will have a better fit to the data for almost any
possible dataset. This is why we must also take into
account the parsimony or complexity of the model. In
particular, a model with a few simple parameters is pre-
ferred to one with many complicated parameters. One
important reason for this is that a model with many
complicated parameters can be tweaked to fit anything
and thus tell us nothing about the data. Common de-
scent postulates a relatively simple tree structure; the
dependency graph postulates a much more complicated
dependency graph. As such, the dependency graph is
much less parsimonious than a tree model.

The need to consider both goodness-of-fit and parsi-
mony is a general feature when comparing models. More
complex models typically provide a better fit to the data
even when those models do not correspond to reality. In
such cases the more complicated model is not a better
explanation of the data; instead it is overfit. To be a
better explanation, the increase in fit to the data must
outweigh the decreased parsimony of the more compli-
cated model. The question thus is: does the dependency
graph fit the biological data better enough to warrant
its additional complexity?
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Model selection theory provides the tools to answer
this question. The fundamental idea is to penalize a
model’s degree of fit based on the complexity of the
model [44]. A more complex model is considered less
fit to make up for its lack of parsimony. In the case
of Bayesian analysis, this is done by treating each pa-
rameter as a random variable. Instead of evaluating
the goodness-of-fit of the biological data to a particular
dependency graph, we evaluate the goodness-of-fit to a
random dependency graph. Generally, this means that
we compute the probability of the data using the law
of total probability. For example, in the case of the
dependency graph:

> Pr(G = g)Pr[D|G = g] (1)

geG

where G is the set of all possible dependency graphs, g is
a particular graph, D is that data being explained, and
G is the actual dependency graph as a random variable.
This gives us the fit of the probabilistic average graph
instead of a particular graph, thus avoiding postulating
a particular complex graph. In practice, this summation
is often intractable and will be bounded or estimated.
Effectively, this leaves us with a new parameterless model
which can then be compared to other parameterless mod-
els.

Once the parameters have been resolved, we are left
with two parameterless models that can be directly com-
pared. This is done by computing the log Bayes factor:

Pr[D|A]

where D is the data, A is one model, and B is the other
model. This is the log-ratio of the likelihoods of the
data under both models after removing all parameters
by use of the law of total probability. The log-ratio will
be positive if the data fits model A better than model
B, and negative if the data fits model B better than
model A. The numbers are on a logarithmic scale and,
according to a widely cited table [45, p. 432], 6.6 bits is
considered decisive.

It is important to note that when a Bayes factor
favors one model over the other, it does not necessarily
mean that the favored model is more likely to be correct
or is the better explanation. It means that the particular
evidence under consideration fits one model better than
the other, but the other model may still be more likely
to be correct if we take into account other information.
Here we simply wish to test predictions about which
model better fits different datasets. The argument for the
dependency graph hypothesis rests on fulfilled predictions
rather than Bayesian inference.
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Biological Data

In order to characterize biology we took data about
how genes are classified into families and distributed in
biological species, from nine different databases. Each
of the databases considered classifies genes into gene
families, groups, or clusters. Many of the databases
included a broader selection of species, but were filtered
to only include animals (metazoa).

Table 1 gives details on the nine databases used in
this study. There is a variety both in the number of
species as well as the number of gene families. Each
database has its own classification of genes into families.
Genes classified as belonging to the same family by one
database are not necessarily classified as the same family
in other databases. Some databases have much more fine
grained gene families, dividing related genes into many
families instead of a single family.

Pfam [51] primarily classifies domains, portions of
genes, rather than the entire gene. Genes are classi-
fied into architectures, which correspond to a particular
combination of domains on a gene. Thus genes are con-
sidered to be in the same family if they have the same
combination of domains.

Ensembl Compara [48] and TreeFam [49] classify
genes into a hierarchy instead of families. For this study,
the hierarchy is collapsed, only keeping the broadest cat-
egories of classification. That is, only genes considered
entirely unrelated are classified as different families. This
groups genes together into families as broadly as possi-
ble. This is not intended to diminish the importance of
modelling the greater structure found in such hierarchies,
but explaining that structure is beyond the scope of this
study.

UniRef [46] provides a number of different clusterings
at different levels of similarity. The UniRef-50 clusters
used here require that the members of a cluster have
at least 50% similarity. The UniRef clusters are not
intended to accurately reflect homologous genes, but
are included for the sake of including a wide variety of
possible definitions of gene families.

OMA [52] provides two different classifications: OMA
Groups and OMA HOGs. The OMA Groups were used
in this study because it follows a stricter strategy for
which genes are considered to belong to the same family,
and thus provided a more unique perspective on the
classification of genes than the OMA HOGs, which would
have been more similar to the other databases.

Each of the databases utilizes different techniques
in the classification of gene families and are based on
somewhat different species and biological data. Consult
the documentation for the individual databases for more
detail on these classifications.

Simulated Evolutionary Data
We analyzed a number of datasets produced using Evol-
Simulator [54], an evolution simulator. It simulates the
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Table 1: A summary of the gene databases used in this study.

Dataset Families Species URL

UniRef-50 [46] 1,831,986 242 ftp://itp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference
proteomes/Eukaryota/

OrthoDB [47] 92,420 330  http://www.orthodb.org/v9/download/odb9_OG2genes.tab.gz

Ensembl [48] 22,972 69  ftp://ftp.ensembl.org/pub/release-87/xml/ensembl-compara/homologies/Compara.87.protein_
default.alltrees.orthoxml.xml.gz

TreeFam [49] 23,491 104  hitp://www.treefam.org/static/download/xml/treefam9.protein.alltrees.orthoxml.xml.gz

Hogenom [43] 50,125 62 ftp://pbil.univ-lyon1.fr:21/pub/hogenom/release_06/FAMS_SEQ_SPECIES_UNIPROT.gz

EggNOG [50] 38,965 89 http://eggnogdb.embl.de/download/eggnog_4.5/data/euNOG/euNOG.members.tsv.gz

Pfam [51] 84,410 145  ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0/database_files/pfamseq.txt.gz

OMA [52] 311,486 132  http://omabrowser.org/All/oma-groups.txt.gz

HomoloGene [53] 29,323 13 fp://ftp.ncbi.nih.gov/pub/HomoloGene/build6s/

Table 2: The parameters for the EvolSimulator simulations

Parameter EvolSim 1  EvolSim 2 EvolSim 3 EvolSim 4 EvolSim 5
numlterations 10000 10000 10000 10000 10000
selectionModel 0 1 2 1 2
numberOfHabitats 1 1 1 5 3
numberOfHabitatNiches 1 1 1 15 9
randomLGTProb 1.0 1.0 1.0 1.0 0.125
divergenceLGTProb 0.0 0.0 0.0 0.0 0.125
geneCompLGTProb 0.0 0.0 0.0 0.0 0.125
gcLGTProb 0.0 0.0 0.0 0.0 0.125
habitatLGTProb 0.0 0.0 0.0 0.0 0.125
orthologReplacementProbability 1.0 1.0 1.0 1.0 0.5

evolution of genes amongst a collection of species de-
scended from a single common ancestor. It includes
models of mutation, selection, and lateral gene transfer.
It is very customizable, allowing a large variety of param-
eters to control the simulation. For this simulation, we
ran the simulation using five different sets of parameters
summarized in Table 2. All parameters not listed in table
are set to the values in the example parameters file pro-
vided by EvolSimulator. To understand the meaning of
the parameters, see the documentation for EvolSimulator.
The resulting genes were processed by OrthoFinder [55]
using the actual species tree produced by EvolSimulator,
to determine gene families. Apart from the species tree,
default parameters were used. This produces a synthetic
dataset of genes which is known to have been produced
by a process of common descent.

Software Data

We also produced a dataset from a number of JavaScript
single page applications produced by a compiler. The
compiler utilizes a dependency graph of modules to de-
termine the code that is inserted into each application.
We analyze the resulting files for units of structure which
come as near as possible to the idea of a gene. We treat
these units as the equivalent of genes, and gene families
as units with the same basic “shape.” The essential idea
is that we have taken an analog to genes in the output
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of a compiler and used it to produce a dataset of gene
families and genes for these “species” of JavaScript single
page applications. This allows us to test predictions
about how well software fits the various models. See
the Methods section for details on how this data was
collected and interpreted.

Models

This study will consider three models, depicted in Fig-
ure 4. The first model, on the left, is the null model
which postulates that there is no pattern to the reuse of
gene families in biology. Unlike common descent or the
dependency graph, there are no relationships between
any species. Instead, any genes shared between multiple
species are attributed to a “toolbox”: a collection of
genes that can be reused across all species. This tool-
box is depicted as the circle in the middle of the figure,
whereas all the squares represent species that use some
genes from the toolbox.

The second model, in the middle, is the tree or com-
mon descent model. It postulates that any genes shared
between two species derive from another species ances-
tral to the extant species. The circles are the ancestral
species, and the squares are the extant species. Each
ancestral species itself (other than the root) has another
species ancestral to it.
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For the tree, we adopt a simple model of gene arrival
and propagation. Each gene family arises in exactly one
species. Somewhat similar genes may arise in different
species, but we assume that they will not be classified as
belonging to the same family. A gene family is inherited
by any descendant species, where it may be lost. Once
lost, it cannot be regained. This means that if two species
share a gene family, their most recent common ancestor
must also have had that gene family. If a species loses a
gene family, none of its descendent species can have that
gene family. This models a basic hierarchical pattern to
the distribution of genes.

Figure 4: A depiction of three models: null (top), tree (middle),
and the dependency graph (bottom). The squares represent
species, and the circles represent a shared toolbox, ancestral
species, or modules depending on the model.
doi:10.5048/BIO-C.2018.3.f4

Genes within families do undergo splitting, sequence
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changes, and functional changes. However, such events
are below the resolution of the model. This model is only
concerned with the presence or absence of the gene family
in a particular species. However, a gene may evolve into
a new gene family. The assumption of the model is that
a particular gene family can only arise once, whether de
novo or from an existing gene family.

Critics will be quick to point out that there are a
variety of mechanisms to explain deviations from the
hierarchical pattern, such as incomplete lineage sorting,
gene flow, horizontal gene transfer, convergent evolution,
and gene resurrection. These mechanisms occur in nature,
but are not included in this model. Recall that we are
testing predictions about whether a particular dataset
will more closely fit a tree or the dependency graph.
Mechanisms which produce deviations from the tree are
not relevant to that prediction.

We assume that the true tree of life would be similar
to the NCBI [53] hierarchy. The NCBI database contains
a disclaimer, “The NCBI taxonomy database is not an
authoritative source for nomenclature or classification
- please consult the relevant scientific literature for the
most reliable information.” However, the NCBI database
is the only source for lineage information we found that
consistently contained all species IDs referred to in the
various gene family databases. We make some adjust-
ments, as described in the Methods section, to the NCBI
hierarchy, where this allows the biological data to fit the
tree of life better.

The dependency graph model is as similar as possible
to the tree model. Instead of ancestral species, the
model has modules. Instead of a single ancestor, each
module may have multiple modules that it depends on.
These are called dependencies. Each species is a top-level
module: no other modules depend on a species module.
Every gene family is introduced in a single module and
inherited by all modules that depend on that module.
Even if a designer were to design two different genes
for the same purpose, we would expect them to end
up being different enough to be classified into different
families. A module may lose a gene that was inherited
from a dependency. Structurally, both models are the
same except for common descent having a single ancestor
where the dependency graph has multiple dependencies.

As part of the analysis, we infer a dependency graph.
We do not claim that it is the true dependency graph,
or the best dependency graph; it is used only to provide
a lower bound on the performance of dependency graph
hypothesis, as will be explained in the Methods section.
Its validity as a bound does not depend on how the
graph was obtained. The graph is obtained by starting
with a dependency graph based on the tree from NCBI.
Modules are added to and removed from the graph when
this would tighten the lower bound on the dependency
graph hypothesis. The exact algorithm for this inference
is described in the Methods section.

Volume 2018 | Issue 3 | Page 9


http://dx.doi.org/10.5048/BIO-C.2018.3.f4

RESULTS

Synthetic Data

Table 3 presents the log Bayes factors for the synthetic
datasets. Positive log Bayes factors show support for
the first model over the second model, whereas negative
log Bayes factors show the opposite. In the case of
EvolSimulator, both the tree and the dependency graph
are consistently a better fit than the null model. However,
the tree is also consistently better supported than the
dependency graph. This confirms one of the predictions,
data actually produced by a branching process does in
fact fit a tree better than the dependency graph. The
analysis was unable to postulate enough modules in order
to obtain a better fit to the data.

The JavaScript applications fit the tree or the depen-
dency graph better than the null model. However, the
dependency graph is preferred to the tree. This again
confirms one of the predictions, software can exhibit a
hierarchical signal while being produced by a dependency
graph. Nevertheless, it still fits the dependency graph
better than the hierarchical pattern.

Figure 5 shows the tree used for the common descent
model of JavaScript applications. The process used to
determine this tree is described in the Methods sections.
It involves trying many possible trees to determine the
tree which gives the best fit of the data to the tree model.
Figure 6 shows a simplified version of the true dependency
graph for these same applications. The colors correspond
to frameworks. A framework is a module that provides
the basic tools necessary to build an application. It is
like a module that defines a body plan shared amongst
several species. Each individual species builds on this
basic plan to define the actual species. A framework
will contain a large amount of code, consequently an
application will share much code with other applications
which use the same framework.

Upon inspection, we can see that the tree is actu-
ally reflecting the reality of the dependency graph. In
the tree, applications using the same framework tend
to cluster together, due to the shared code. However,
applications which share non-framework modules are
put closer together in an attempt to explain that reuse.
The applications using the angular2 framework (tan)
are oddly placed, branching out of the react based ap-
plications (pink). However, this is because hn-ng2 and
react-news both use the large firebase module. Mamba,
vim-awesome, and sound-redux are pulled closer to the
root because they reuse the lodash and immutable mod-
ules which are also used by the angular applications
(green). The tree is working to approximate the depen-
dency graph.

Biological Data
Table 4 depicts the log Bayes factor for three models and
nine different biological databases. It shows how well
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Table 3: The log Bayes factors for the models in the synthetic
datasets

Tree D. Graph D. Graph
Dataset Vs Vs vs

Null Null Tree
JavaScript 9,791 15,078 4,749
EvolSim 1 83,301 83,023 -886
EvolSim 2 45,939 45,005 -1,582
EvolSim 3 29,851 28,485 -1,598
EvolSim 4 27,982 26,554 -1,793
EvolSim 5 36,120 35,553 -874

Table 4: The log Bayes factors for combinations of models and
datasets

Tree D. Graph D.Graph
Dataset Vs Vs Vs

Null Null Tree
UniRef-50 6,193,801 6,308,988 111,823
OrthoDB 9,214,606 9,730,055 515,450
Ensembl 875,350 962,274 86,924
TreeFam 1,362,985 1,403,952 40,967
Hogenom 884,815 1,022,243 137,428
EggNOG 1,497,174 1,579,650 82,476
Pfam 1,173,599 1,251,841 78,244
OMA 3,265,608 3,451,745 184,777
HomoloGene 106,010 116,080 10,064

the three models: the null model, tree, and dependency
graph fit the biological data. Common descent has log
Bayes factors ranging from 10° to 107 bits over the null
model. Common descent is overwhelmingly a better fit
than the null model. This confirms the results of previous
quantitative analyses of the nested hierarchy. The bio-
logical data unavoidably does exhibit some resemblance
to a hierarchy.

However, while the tree is a better fit than the null
model, the dependency graph is a better fit than the tree.
Even in the biological gene database least favorable to
the dependency graph, HomoloGene, the log Bayes factor
is in favor of the dependency graph by over 10,000 bits.
Recall that 6.6 bits is commonly considered decisive. The
data is over 10390 times more likely to be produced by
the dependency graph model than the tree model. This is
very far beyond decisive, delivering a clear confirmation
of the prediction. However, keep in mind that a clear
confirmation of a particular prediction, while providing
evidence for the hypothesis, is not the same thing as a
clear confirmation of the hypothesis itself.

Biological Graphs

Introduction

This section will present graphs inferred from the biolog-
ical data. However, we must urge caution in interpreting
these graphs. These graphs constitute the first attempt
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Figure 5: The phylogenetic tree for the JavaScript applications doi:10.5048/BI0-C.2018.3.f5
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Figure 6: A simplified dependency graph for the JavaScript applications. The rectangles correspond to individual programs, whereas
coloured ellipses correspond to javascript 'frameworks’ and white ellipses correspond to other modules. doi:10.5048/BIO-C.2018.3.16
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to fit a dependency graph to biology, not any sort of
attempt at a definitive reconstruction of the graph. The
best fitting dependency graph might be substantially
different than the graphs presented here. All that we can
conclude with certainty is that the best fitting graph fits
at least as well as the graphs presented here. Further-
more, the strength of the case for the dependency graph
hypothesis rests on getting consistent results across many
gene databases. Examples of inferred modules, however
striking, come from one database and are thus less sup-
ported than the overall result.

Statistics

One of the predictions was that the inferred dependency
graph should not simply be the tree of life with a few
additions. Table 5 shows the number of modules of each
type in the graphs inferred from the various biological
databases. The dependency graph includes a variety
of modules, the species modules which correspond to
each species, the taxonomic modules which correspond
to taxonomic categories, and the non-taxonomic modules
which do not correspond to either individual species or
taxonomic categories. The biological data set shows over
ten times more non-taxonomic modules than taxonomic
modules. Compare this to Table 6; the corresponding
statistics for the data produced by EvolSimulator. In
contrast, the EvolSimulator datasets show a much smaller
proportion of non-taxonomic modules. This confirms our
prediction: we find many more non-taxonomic modules
in biological data than in data known to have been
produced by common descent.

Table 7 shows the number of genes which the fit-
ting method attributed to each type of module for the
biological datasets. The species column contains gene
families that are only found in one species. It varies
substantially from database to database depending on
how they have defined family. The taxonomic column
contains gene families introduced in modules correspond-
ing to taxonomic categories. The non-taxonomic column
contains gene families introduced in modules that do not
correspond to taxonomic categories or species. In all of
the biological databases except HomoloGene, there are
more genes in the non-taxonomic modules than in the
taxonomic modules. HomoloGene still has a substan-
tial number of gene families in non-taxonomic modules.
Table 8 shows the corresponding results from the Evol-
Simulator datasets. In contrast to the biological case,
only a small fraction of the genes in the EvolSimulator
datasets are assigned to non-taxonomic modules. This
again confirms the prediction; many genes are attributed
outside of the taxonomic modules in biological datasets
but not in the data known to have been produced by
common descent.

The inferred biological dependency graphs are not
simply the tree of life with a few modules tacked on.
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Small Examples

We will now consider a few small examples of cases
which our model-fitting method inferred to be explained
by modules. A striking example can be found in Ne-
matostella vectensis (scarlet sea anemone) and Bran-
chiostoma floridae (Florida lancelet). These are distantly
related organisms with the anemone being in the phylum
Cnidaria and the lancelet being in the phylum Chordata.
Nevertheless, they contain between 25 and 564 (depend-
ing on the database consulted) gene families found in
both species but in no other metazoan species in the
database. In all datasets where both species are present,
a module is inferred to exist to explain the genes found
in both species.

Figure 7 depicts a case from the EggNog [50] database.
Three species, Gadus morhua (atlantic cod), Gasterostus
aculeatus (three-spined stickleback), Xiphophorus macu-
latus (southern platyfish) share fifty-four genes not found
elsewhere in any other metazoan species. Note especially,
their absence from the other closely related species de-
picted in Figure 7. Consequently, a module is inferred to
exist to explain the distribution of these fifty-four genes.

One might suspect that any combination of three
of these species would yield a similar number of gene
families found only in those species. However, Table 9
shows that this is not the case. The table shows, for
every possible combination of three species, how many
gene families are found in all of those species, but in no
other metazoan species. We see that most combinations
have few gene families, but a few have many gene families.
The dependency graph model fits the data because it
is able to postulate a large module with many genes to
explain this. If every combination had many genes, the
dependency graph model would not fit because it would
have to postulate a large number of modules to explain
every combination.

Figure 8 depicts the inferred dependency graph from
the HomoloGene database for Gallus gallus (chickens),
Danio rerio (zebrafish), and Mus musculus (mice). Ho-
moloGene is the smallest database, only containing thir-
teen metazoan species. Consequently, the number of
modules inferred from the data is also small, and thus
we can depict all of the inferred modules in a figure.
This graph shows all the modules depended on by these
three species. Each species has a number of modules not
shared with the other two species. There are modules
shared between all possible combinations of these three
species.

Slices of the Graph

There is a challenge in presenting the inferred dependency
graphs because they are very large. Even the smallest
dataset, HomoloGene, has 145 modules and would be
infeasible to present visually in a readable way. Instead,
we present a subset of the overall graph, showing only
a selected subset of the species and the most significant
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Table 5: Number of modules of various types for the inferred biological dependency graphs

Dataset Species Taxonomic Non-Taxonomic
UniRef-50 242 93 7,874
OrthoDB 330 181 9,386
Ensembl 69 53 1,328
TreeFam 104 74 919
Hogenom 62 40 1,388
EggNOG 89 64 1,743
Pfam 145 77 2,601
OMA 132 60 9,831
HomoloGene 13 11 142

Table 6: Number of modules of various types for the inferred EvolSimulator dependency graphs

Dataset Species Taxonomic Non-Taxonomic
EvolSim 1 43 30 74
EvolSim 2 43 24 64
EvolSim 3 43 23 59
EvolSim 4 40 27 61
EvolSim 5 43 29 43

Table 7: Number of gene families found in each type of module for biological data

Dataset Species Taxonomic Non-Taxonomic
UniRef-50 1,441,028 171,063 219,895
OrthoDB 662 24,637 67,121
Ensembl 52 8,948 13,972
TreeFam 281 10,425 12,785
Hogenom 11,810 17,867 20,448
EgeNOG 2,559 16,154 20,252
Pfam 50,169 4,685 29,556
OMA 39,679 70,928 200,879
HomoloGene 3,538 17,481 8,304

Table 8: Number of gene families found in each type of modules for EvolSimulator

Dataset Species Taxonomic Non-Taxonomic
EvolSim 1 25,594 10,149 746
EvolSim 2 18,039 5,907 811
EvolSim 3 17,124 3,248 615
EvolSim 4 29,871 3,949 763
EvolSim 5 15,685 4,276 246
® Oreochromis niloticus (Nile Tilapia)
° o ® Xiphophorus maculatus (Southern Platyfish)

e

— Oryzias latipes (Medaka)

@ Gasterosteus aculeatus (Three-Spined Stickleback)

Takifugu rubripes (Torafugu)
Tetraodon nigroviridis (Spotted Green Pufferfish)

® Gadus morhua (Atlantic Cod)

Figure 7: The tree of life for several species of fish from EggNog. Species in green share fifty-four genes not found elsewhere. The most
parsimonious common descent model is that the same set of fifty-four genes were lost in three different lineages. doi:10.5048/BI0-C.2018.3.17
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Figure 8: HomoloGene inferred dependency graph for Gallus gallus, Danio rerio, and Mus musculus. The colors represent which
species depend on the module. The area of the circles represent the number of gene families gained in a module. doi:10.5048/BIO-C.2018.3.18
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Table 9: Number of gene families found only in a combination of three species from closely related species of fish.

Species Combination Gene Families Clade?
Gadus morhua Xiphophorus maculatus Oryzias latipes 2 No
Gadus morhua Xiphophorus maculatus Oreochromis niloticus 8 No
Gadus morhua Xiphophorus maculatus Takifugu rubripes 1 No
Gadus morhua Xiphophorus maculatus Gasterosteus aculeatus 54 No
Gadus morhua Xiphophorus maculatus Tetraodon nigroviridis 0 No
Gadus morhua Oryzias latipes Oreochromis niloticus 2 No
Gadus morhua Oryzias latipes Takifugu rubripes 0 No
Gadus morhua Oryzias latipes Gasterosteus aculeatus 25 No
Gadus morhua Oryzias latipes Tetraodon nigroviridis 1 No
Gadus morhua Oreochromis niloticus Takifugu rubripes 1 No
Gadus morhua Oreochromis niloticus Gasterosteus aculeatus 0 No
Gadus morhua Oreochromis niloticus Tetraodon nigroviridis 0 No
Gadus morhua Takifugu rubripes Gasterosteus aculeatus 4 No
Gadus morhua Takifugu rubripes Tetraodon nigroviridis 0 No
Gadus morhua Gasterosteus aculeatus Tetraodon nigroviridis 6 No
Xiphophorus maculatus Oryzias latipes Oreochromis niloticus 8 Yes
Xiphophorus maculatus Oryzias latipes Takifugu rubripes 1 No
Xiphophorus maculatus Oryzias latipes Gasterosteus aculeatus 7 No
Xiphophorus maculatus Oryzias latipes Tetraodon nigroviridis 3 No
Xiphophorus maculatus Oreochromis niloticus Takifugu rubripes 2 No
Xiphophorus maculatus Oreochromis niloticus Gasterosteus aculeatus 10 No
Xiphophorus maculatus Oreochromis niloticus Tetraodon nigroviridis 2 No
Xiphophorus maculatus Takifugu rubripes Gasterosteus aculeatus 0 No
Xiphophorus maculatus Takifugu rubripes Tetraodon nigroviridis 2 No
Xiphophorus maculatus Gasterosteus aculeatus Tetraodon nigroviridis 2 No
Oryzias latipes Oreochromis niloticus Takifugu rubripes 5 No
Oryzias latipes Oreochromis niloticus Gasterosteus aculeatus 4 No
Oryzias latipes Oreochromis niloticus Tetraodon nigroviridis 0 No
Oryzias latipes Takifugu rubripes Gasterosteus aculeatus 0 No
Oryzias latipes Takifugu rubripes Tetraodon nigroviridis 1 No
Oryzias latipes Gasterosteus aculeatus Tetraodon nigroviridis 6 No
Oreochromis niloticus Takifugu rubripes Gasterosteus aculeatus 3 No
Oreochromis niloticus Takifugu rubripes Tetraodon nigroviridis 3 No
Oreochromis niloticus Gasterosteus aculeatus Tetraodon nigroviridis 0 No
Takifugu rubripes Gasterosteus aculeatus Tetraodon nigroviridis 1 Yes

dependencies and modules for those species. Only mod-
ules depended on by the shown species are kept. We
skip modules with only one dependant, showing the de-
pendencies of that module as direct dependencies of the
dependant. For example, if Module A depended on Mod-
ule B which depended on Module C, but Module A is the
only dependant of Module B, Module B is skipped, and
Module A is depicted as depending directly on Module
C. The smallest modules, in terms of total genes in the
module including those inherited from dependencies, are
removed.

Additionally, in each graph those modules which cor-
respond to clades in the NCBI hierarchy are colored green.
Modules inferred to exist but which do not correspond
to taxonomic categories are colored orange. This allows
the easy identification of those parts of the dependency
graph that do not correspond to simply reinterpreting
the tree of life.

Figure 9 shows the graph for the HomoloGene
database. Many of the dependencies in the graph match
the expectations of common descent. Pan troglodytes
(chimpanzees) and Homo sapiens (humans) share a mod-
ule as do Rattus norvegicus (rats) and Mus musculus
(mice). However, there are also surprises. Bos taurus
(cows) shares a module with the rodents, specifically
Rattus norvegicus and Mus musculus. Pan troglodytes
(chimpanzees) shares a module with Macaca mulatta
(rhesus monkeys). Another module is shared between
Gallus gallus, Xenopus tropicalis, and Danio rerio.

£ Blocomplexity.org

Figure 10 shows a simplified dependency graph in-
ferred from the OrthoDB database for a selection of
species classified as Euteleosteomorpha, a cohort of ray-
finned fishes, by NCBI.

Figure 11 depicts the dependency graph inferred from
the OMA database for six primate species. Homo sapiens
share a module with Pan troglodytes (chimpanzees) as
expected, but also share a module with Macaca mulatta
(rhesus macaques). There are many non-taxonomic mod-
ules corresponding to various combinations of these six
species.

Figure 12 depicts the dependency graph inferred be-
tween nine familiar mammalian species. Mus musculus
(mice) and Rattus norvegicus (rats) share a module as
would be expected. So do Felis catus (cats) and Canis
lupus familiaris (dogs). Other species show some unex-
pected sharing, Sus scrofa (wild boar) shares a module
with Felis catus and Canis lupus familiaris. Mus mus-
culus and Ratus norvegicus share a module with Felis
catus and Canis lupus familiaris.

CONCLUSIONS

Explaining the approximate nested hierarchy has been a
long standing challenge to common design. No account of
this pattern has achieved widespread acceptance amongst
those holding to common design. We have proposed a
novel explanation, the dependency graph. The predic-
tions of the dependency graph hypothesis set out in this
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Figure 9: Subset of the dependency graph inferred from the HomoloGene database The graph only shows modules with at least 100
genes, including genes inherited from dependencies. Rectangles correspond to species, circles correspond to modules. The size of a module
is proportional to the number of genes gained in that module (genes inherited from dependencies are not counted). Green circles are modules
corresponding to taxonomic categories. Orange circles are modules that do not correspond to a taxonomic category. doi:10.5048/BIO-C.2018.3.19
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Figure 10: Subset of the dependency graph inferred from the OrthoDB database restricted to Euteleosteomorpha. The graph only
shows modules with at least 50 genes, including genes inherited from dependencies. Rectangles correspond to species, circles correspond
to modules. The size of a module is proportional to the number of genes gained in that module (genes inherited from dependencies are
not counted). Green circles are modules corresponding to taxonomic categories. Orange circles are modules that do not correspond to a
taxonomic category. doi:10.5048/BI0-C.2018.3.{10
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Figure 11: A subset of the dependency graph inferred from the OMA database, limited to six primate species. The graph only
shows modules with at least 100 genes, including genes inherited from dependencies. Rectangles correspond to species, circles correspond
to modules. The size of a module is proportional to the number of genes gained in that module (genes inherited from dependencies are
not counted). Green circles are modules corresponding to taxonomic categories. Orange circles are modules that do not correspond to a
taxonomic category. doi:10.5048/BI0-C.2018.3.111

Sus scrofa Bos taurus Felis catus Canis lupus familiaris S
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Figure 12: A subset of the dependency graph inferred from the Ensembl database, limited to nine familiar mammal species. The
graph only shows modules with at least 50 genes, including genes inherited from dependencies. Rectangles correspond to species, circles
correspond to modules. The size of a module is proportional to the number of genes gained in that module (genes inherited from dependencies
are not counted). Green circles are modules corresponding to taxonomic categories. Orange circles are modules that do not correspond to a
taxonomic category. doi:10.5048/Bl10-C.2018.3.f12
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paper have been shown to be correct. The biological
data was a better fit to a dependency graph than to
a tree. The data produced by a simulated process of
common descent was a better fit to a tree than to a
dependency graph. The data produced by a compiler
was both a better fit to a dependency graph than a tree,
and a better fit to a tree than to the null model. The
inferred biological dependency graphs contained were not
simply the tree of life with a few additions, but instead
contained many additional modules.

Further research could challenge these results in a
number of ways, potentially overturning the predictions.
Examples include improving the quality and breadth of
genetic data, improved techniques for classifying genes
into families, or a better phylogenetic tree. Any of these
could, in principle, reverse the status of the predictions
made about the biological data. However, given that the
results are similar across the different databases, this
does not seem a likely outcome.

If the dependency graph hypothesis is correct, the
pattern observed here should continue. Other genetic
data which show hierarchical patterns should also be
found to fit a dependency graph better than a hierar-
chy. This includes lines of evidence such as pseudogenes,
transposons, and synteny. Furthermore, the dependency
graph should serve as the foundation for a comprehen-
sive theory explaining all apparent evidence for common
descent. It remains to be seen whether or not these
predictions will be borne out.

An obvious objection is that we have not included
any of the mechanisms thought to account for non-
hierarchical data such as incomplete lineage sorting, gene
flow, convergent evolution, or horizontal gene transfer.
As such, it might be argued that any of the features
of the data interpreted as evidence for the dependency
graph may also be explained by these mechanisms. The
focus of this paper has not been to critique common de-
scent, but to the test the predictions of the dependency
graph hypothesis. The challenge to common descent lies
not in the comparison of the tree and dependency graph
models but in explaining the successful predictions of
the dependency graph hypothesis.

Furthermore, if the hypothesis of common descent
can explain a hierarchy, lack of a hierarchy, and the
appearance of a dependency graph, what sort of predic-
tive power can the hypothesis possibly hold? It is not
enough to merely explain the features of the data, rather
they must be explained within the context of a testable
hypothesis. Critiquing those rejecting common descent,
White et al [15] wrote “It is essential that any person who
does not accept the continuity of evolution puts forward
alternative testable models.” This paper has answered
the challenge, and paraphrasing their sentiment, it is
essential that any person who does not accept the depen-
dency graph puts forward alternative testable models.
This means that it is not enough to simply postulate
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mechanisms to explain deviations from a hierarchy; one
must postulate a hypothesis with predictions about the
data.

It is possible that the defenders of common descent
will devise a testable model that can explain the suc-
cessful predictions of the dependency graph hypothesis.
Perhaps some sort of extended synthesis of common de-
scent with additional mechanisms could be that model.
However, this study was designed to minimize the in-
fluence of mechanisms that deviate from the tree. The
clade Metazoa was studied specifically because horizontal
gene transfer is held to be rare amongst this clade. Uti-
lizing gene families rather than sequences ignores small
deviations from the tree easily explained by convergent
evolution or incomplete lineage sorting. This leaves any
extended model with limited options for mechanisms to
include.

Furthermore, the dependency graph model might
improve. The estimate of the performance of the depen-
dency graph model depends on an inferred dependency
graph. We have focused on keeping the algorithm used
to infer the graph relatively simple. Further research
will likely uncover improvements to the inference, find-
ing a better graph and thus increasing the performance
of the dependency graph model without modifying the
model itself. It is worth noting that refinements to the
common descent model might also be applicable to the
dependency graph model.

A possible, but incorrect, objection would be that
the dependency graph will always be better than the
tree of life. Since the dependency graph starts with
the hierarchy and then improves upon it, it may seem
that it will always outperform the tree regardless of the
true explanation for the data. It may seem that the
analysis forces modules onto the data. However, this
is not true as is demonstrated by the EvolSimulator
datasets which did not fit the dependency graph model.
Bayesian model selection penalizes models for postulating
complexity such as is inherent in the dependency graph.
This prevents modules being forced onto data where they
do not fit. The dependency graph is better only if the
improved fit to the data outweighs the complexity.

Our key contribution is describing a proposed pattern
of life expected under common design. Common design
is not restricted to finding anomalies which are difficult
for common descent to explain. Many of these anomalies
now fit into the overall pattern of life expected under the
dependency graph. Researchers can work to understand
these modules and the dependency links between them.
Our hope is that this research is a large step forward
in developing common design not as a critique of com-
mon descent, but as a research program which produces
testable models and increases our understanding of the
biological world.
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METHODS

JavaScript Applications
Each application was taken from a GitHub repository:

« dougjohnston/angular-drum-machine
o orizens/echoes-ng2

o hswolff/hn-ng2

o HospitalRun/hospitalrun-frontend

« yangmillstheory /mamba

« microapps/MoonMail-Ul

« paulhoughton/mortgage

o shlomiassaf/ng2-chess

« benoitvallon/react-native-nw-react-calculator
« echenley/react-news

« afonsopacifer/react-pomodoro

« paulhoughton/remember

o cowbell/sharedrop

e Soundnode/soundnode-app

« andrewngu/sound-redux

* taigaio/taiga-front

e nicroto/viktor

o vim-awesome/vim-awesome

o ProtonMail/WebClient

The compiled form of each application was parsed using
the acorn® parser. The acorn parser provided an abstract
syntax tree for the compiled applications. An abstract
syntax tree is like an annotation one might use to under-
stand the genome. It records the relationship between
different pieces of code in the compiled program as well
as the meaning of each individual piece.

We extract the individual functions found in the
program. These functions are taken as being the nearest

Thttps://github.com/ternjs/acorn
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equivalent to a gene. Characteristics of the function
not directly related to the “shape” of the function are
removed. For example, comments, the values of literals,
variable names, and the contents of internal functions
are removed. Only the types of the abstract syntax tree
nodes and the identities of the operators are kept. The
result is taken to be the “gene family” of the function.
Any two functions which both have the same basic shape
will thus be considered to belong to the same “gene
family”.

Probability of the Data

The following Bayesian analysis will assume various pri-
ors over nuisance parameters. They will, for the most
part, be uniform priors over the relevant parameter space.
In some cases, other priors might be argued to be more
appropriate. Nevertheless, for the purposes of this first
analysis, we have chosen simple straightforward unin-
formed priors that are analytically tractable.

Given a particular graph (additional nodes and their
relationships), we need to compute the probability of
the data under that graph. The term “node” refers to a
species, ancestral species, module, or toolbox depending
on the model. Each node not only has a number of other
nodes it depends on, but also a number of gene families
present in that node. For each node, including species,
each gene is in one of four possible states:

¢ Gained - the gene family is present in the node
but not any of its dependencies.

e Present - the gene family is present in the node
and at least one of its dependencies.

e Lost - the gene family is present in at least one of
the node’s dependencies, but not the node itself.

e Absent - the gene family is not present either in
the node or any of its dependencies.

We assume that every gene family only emerges in
one node; it is too improbable for the same gene family
to emerge twice. We expect that some species underwent
more evolution than others, and some modules are larger
than others. We model this by having each node have
a gain parameter which indicates the probability that a
gene will be gained there. Effectively, the module each
gene is introduced in is chosen by throwing a weighted
many-sided die. The sum of all gain parameters across all
nodes must be one so that the total probability of a gene
being gained in some module is one. The probability of
gene j being gained in module 7 is thus «; where «; is
the gain parameter for module 7. This gives us a discrete
probability for all the gains of:

M N
e =11e (3)
j i
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where IV is the number of modules, M is the number of
genes, f(j) is the index of module where gene j is gained,
and g; is the number of gains in module i. However, the
values of «; are unknown nuisance parameters. We will
take a flat Dirichlet prior, which assumes that all possible
combinations of «; are equally probable. Using the law
of total probability to eliminate the «; parameters, we
obtain the probability:

N
v e+ )

where G is the number of gene families, and ~ is the
gamma function.

While a gene can only be gained once, it can be lost
many times in many different nodes. Under common
descent, a gene is lost during ordinary evolutionary pro-
cesses. Under the dependency graph, a module may
remove or replace the genes that would have been inher-
ited from one of its dependencies. In either case, it is
expected that some species or modules will lose more
genes than others. Thus each node will have a loss pa-
rameter indicating the probability that a gene will be
lost. Effectively, each gene inherited from a dependency
or ancestor is subject to a weighted coin flip to determine
whether or not it is kept. The discrete probability that
the particular set of genes will be lost in a module is
given by the binomial:

N (1= NP (5)

where A is the loss parameter, [ is the number of losses,
and p is the number of present genes. The present genes
are those genes which could have been lost, but were
not. The loss parameter is another unknown nuisance
parameter, and we will adopt a uniform prior assuming
any possible value as equally likely. Utilizing the law of
total probability we can obtain:

/1Al(1—A)PdA=5(l+1,p+1) (6)
0

where 3 is the beta function. The probability density
function for A is 1 between 0 and 1, and thus does not
explicitly appear in the formula.

This gives us the probability of a particular assign-
ment of genes given a graph of the relationships between
the nodes. We wish to know the probability of the data
under any assignment, given a particular graph.

Pr[D | M,G]= Y PrfalG] (7)
a€A(D)

where M is the model, D is the observed biological data,
G is the given graph, A(D) is the set of assignment of
gene families to nodes which are consistent with the data
D, and Pr[a|G] is the probability of assignment a given

£ Blocomplexity.org

The Dependency Graph of Life

graph G. This summation is problematic because it is
not feasible to sum over all possible assignments. Conse-
quently we will use importance sampling to estimate the
summation.

We can rewrite the summation as:

fi(a)
QEAZ(D) Prla|G] @ (8)

20 1
Pr[D | M,G] = Z%
=1

where f1, f2, f3,..., fi8, f19, f20 is a family of probability
density functions over assignments. This can in turn be
rewritten as:

21 Pr[X|G

PriD | M,G) =3 35 Bl5

i=1

] (9)

where X is a discrete random variable distributed accord-
ing to the probability density function f;. For the f;s we
start with the best assignment found during the search
process. Gains are moved to an ancestral species with
probability 27¢ and losses are moved to all descendent
species with probability 27*. We can thus use Monte
Carlo sampling to estimate each of the X;s to form an
overall estimate of the total summation. The conse-
quence is that we sample a variety of assignments both
similar and different from the best known assignment to
form an estimate of the overall summation.

This gives us an approximation to the probability of
the data given a particular graph. In order to obtain the
probability of the data under the model in general, we
must use the law of total probability.

Pr[D | M] = Pr[g] Pr[D|M,g]
geG

(10)

Recall that the different models make different assump-
tions with regards to the graphs. In the case of the
null model, there is only one possible graph, thus the
probability of the data under that model is the same as
the probability of the data under that particular graph.

For the case of common descent, any tree is a valid
model. However, it is not feasible to sum over all possible
trees. Furthermore, it is not clear what prior would be
appropriate. To resolve these problems, we will use the
following bound which follows from Equation 10 because
the maximum of a weighted average over a set is always
lesser than or equal to the maximum.

Pr[D | Mp] < I;leaéCPT[D|MD7g] (11)
where Mp is the model of common descent. This will
bias the results in favor of common descent, as it assumes
that the probability of the data under any tree is the
same as the probability under the best tree. In practice,
however, determining the best possible tree is difficult.
We will instead use a tree thought to be near-optimal as
an approximation.
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In the case of the dependency graph model, there are
many possible dependency graphs, and we need to assign
a probability to each one. This probability is only used
in the case of the dependency graph model. The largest
number of modules that could conceivably be used to fit
the data would be one for each combination of species
except the empty set or 2/°1 — 1 where |S| is the number
of species. We will assign an equal probability to every
possible number of modules less than or equal to that
limit.

Given the number of modules in a graph, we need to
assign probabilities to the possible edges or dependencies
both between modules and from species to modules. The
maximum number of edges in a directed acyclical graph
is given by

n(n—1)

2

where n is the number of nodes in the graph. Further-
more, given an arbitrary topological ordering there are
@ possible edges. Any directed acyclical graph is
isomorphic to at least one graph with any given topo-
logical ordering, thus we can restrict consideration only
to those with a particular arbitrary topological ordering.
We take there to be a certain probability, b, of an edge
being present. This allows us to express the probability
of a particular combination of edges being present as

(12)

bi(1 — byl

(13)
where d is the number of edges or dependencies in the
graph. However, the value of b is unknown. We will
adopt a uniform prior assuming it equally likely to be
any value between zero and one. We can use the law of
total probability to evaluate this:

1 L —
/ b(1-b) " db = B(d+1, w
0

—d+1) (14)

where [ is the beta function. The probability density
function for b is 1 between 0 and 1, and thus does not
explicitly appear in the formula. If we combine this with
uniform probability over possible numbers of nodes, we
obtain:
Bld+ 1,270 g4 1)
2181 — 1
This is the probability of a particular dependency graph.
Returning to the law of total probability for the
dependency graph model:

(15)

Pr[D | Mg] = ) Pr[D|Mg, g) Pr[g|Mc)
geG

(16)

where Mg is the dependency graph model. We cannot
feasibly compute the probability over all possible graphs.
Instead, we use the following bound:

Pi[D | Mg) = Pr[D|Ma, ) PrlgiMa]  (17)
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for any arbitrary ¢g. This is valid because the summation
over non-negative numbers (such as probabilities) is al-
ways at least as great as any individual term. Critically,
this result applies to any graph, no matter how that
graph was obtained.

Inferring Graphs and Assighments

The basic common descent tree is taken from the NCBI
hierarchy with some necessary tweaks. The NCBI tree
contained many species not included in a given database.
We pruned all branches of the tree leading solely to
species not included in the particular database under
study. Redundant nodes with only one child were col-
lapsed after the pruning. In some cases, the NCBI tree
is not bifurcating. For example, Pan, Homo, and Gorilla
are all classified immediately under Homininae despite
the fact that Pan and Homo are held to be more closely
related. In any case where grouping two species from a
non-bifurcating parent increased the probability of the
data, the tree was modified to group those species to-
gether. In other cases, the reverse operation, ungrouping
species held to share a common ancestor was done when
it increased the probability of the data.

For the EvolSimulator dataset, we used the tree re-
flecting the true history from the simulation. For the
JavaScript applications dataset, we used dynamic pro-
gramming to find the optimal bifurcating tree. By opti-
mal, we mean the tree which assigns the highest probabil-
ity to the data. The same tweaking processes discussed
above where nodes may be added or removed from the
tree was applied in either case.

Algorithm 1 Algorithm for Adding a Module

while exist pairs of modules not yet eliminated do
for all pairs of modules not yet eliminated do
compute the move-candidate gene families for
a module depended on by the pair of
modules (see Algorithm 2)

end for
take the pair of modules with the largest set of
move-candidate gene families
add a new module depended on by the pair
add all move-candidate gene families to module
if probability of graph and assignment is higher
than before the module is added then
keep the module
else
revert to state before module was added
eliminate module pair from future consideration
end if
end while

In order to determine the location of the genes in
common descent, we follow Dollo parsimony [56, 57]. The
technique is based on the assumption that a gene family
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Figure 13: A tree with a depiction of the assignment of a gene family to nodes. Green nodes have the gene family, whereas the red
nodes do not. The squares are extant species, but the circles are postulated ancestral species. doi:10.5048/BIO-C.2018.3.13

Figure 14: A dependency graph with a depiction of the assignment of a gene family to modules. doi:10.5048/BI0-C.2018.3.f14
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Algorithm 2 Algorithm for determining move-candidate
gene families for a new module

for all gene families do
if gene family is only present in species which
transitively depend on the new module then
if total modules that depend on new module is
less than total modules which depend on
current module then
gene family is a move-candidate gene family
end if
end if
end for

Algorithm 3 Algorithm for Removing Modules

for all modules do
if module is not a species module then
if module has dependencies then
for all dependencies of module do
move all gene family gains to dependency
move all losses to all dependant modules
for all dependants do
for all dependencies do
make dependant depend directly
on dependency
end for
end for
remove all dependencies on module
remove module
record resulting graph
end for
if any graph with the module removed has
a higher probability then
take graph with the highest probability
end if
end if
end if
end for

can only be gained once, and attempts to minimize the

number of times it must be lost to explain the data.

Figure 13 depicts the result for a single gene family. In
a tree structure, there is a single species ancestral to all
species which contain a gene family. The gene family
cannot be gained in a module lower in the tree, because
then the gene family would have to be gained in multiple
nodes. In the case of the figure this is node A, the
root. The gene family in question must be in the root,
otherwise it would be impossible for it to be inherited by
all the species which have it. Had species J not contained
this gene family, it would have been gained in module C

and modules A, B, and E would not have the gene family.

In general, the gene family could be gained higher in
the tree, but in most cases this would be a less probable
assignment because it would imply the gene family was
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lost in more places. Thus, we initially place the gene
family in that module.

Furthermore, a gene family is considered to be lost
in the first ancestral node where none of the descendant
species have the gene family. The gene family cannot
have been lost in a higher node because that would
require the gene family to be regained, and we assumed
that each gene family is only gained once. In the case of
the figure, the gene family is lost in D because neither H
nor I contain the gene family. However, it cannot be lost
in E because then J would be unable to inherit the gene
family. The gene could have been lost in lower nodes, but
in most cases this would be a less probable assignment
because it would imply the gene was lost in more places.
Thus we initially place the loss in these modules.

However, there are cases where placing the gain of a
gene family higher or the losses lower will be an improve-
ment. For example, if species H and I lost many gene
families, it may make sense for the loss of the gene family
in the figure to have taken place in both of the species
nodes rather than the shared node. This happens when
the higher or lower nodes have higher loss or gain param-
eters rendering individual gains or losses more probable
in those nodes. We systematically test cases where we
can push gains up or losses down that would increase the
probability of the assignment. We repeatedly make the
change producing the largest increase in probability until
no such increases are possible. We take this assignment
of genes to be approximately optimal.

The assignment of gene families to the null model
is derived in the same way. It is identical to common
descent where there is a single ancestral species which
all extant species derive directly from.

The assignment of gene families to the dependency
graph is more complicated. Our algorithm begins by
converting the tree of common descent into a dependency
graph. We follow the NCBI tree, pruned to remove any
species not included in the dataset. The same heuristic
for assigning gene families to nodes is used as in the
common descent case. However, the process of moving
gains up the tree or losses down the tree is not applied.

Starting with the common descent tree and gene fam-
ily assignments may seem problematic. Recall, however,
that the dependency graph hypothesis views the tree-
of-life graph as approximately correct, but incomplete.
The taxonomic categories discovered by biologists are
the largest modules in the dependency graph of life. As
such, the dependency graph should be expected to resem-
ble the tree of life with various non-taxonomic modules
added to it.

Furthermore, the purpose of the graph inferred by
this process is for use in Equation 17 where it serves to
compute a lower bound on the probability of the data
under a randomly selected dependency graph. That
equation is valid for any arbitrary graph, no matter how
that graph was obtained. The dependency graph could
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Description File name Size doi link

All files in one large zip. supplemental.zip 91M  doi:10.5048/BIO-C.2018.3.51
Explains the file contents and format. README.txt 1K  doi:10.5048/BIO-C.2018.3.52
Script computes log-likelihood of graph / tree. evaluate.py 2.5K  doi:10.5048/BIO-C.2018.3.53
EggNOG database inferred dependency graph. eggnog.graph.json 2.5M  doi:10.5048/BIO-C.2018.3.54
EggNOG database adjusted ancestry tree. eggnog.tree.json 3.6M  doi:10.5048/BIO-C.2018.3.55
Ensembl database inferrred dependency graph. ensembl.graph.json 1.2M  doi:10.5048/BIO-C.2018.3.56
Ensembl database adjusted ancestry tree. ensembl.tree.json 1.7M  doi:10.5048/BIO-C.2018.3.57
Hogenom database inferred dependency graph. hogenom.graph.json 2.7TM  doi:10.5048/BIO-C.2018.3.58
Hogenom database adjusted ancestry tree. hogenom.tree.json 4.6M  doi:10.5048/BIO-C.2018.3.59
HomoloGene database inferred dependency graph. homologene.graph.json 387K  doi:10.5048/BI0-C.2018.3.510
HomoloGene database adjusted ancestry tree. homologene.tree.json 644K  doi:10.5048/BIO-C.2018.3.511
OMA database inferred dependency graph. oma.graph.json.zip 5.5M  doi:10.5048/BIO-C.2018.3.512
OMA database adjusted ancestry tree.. oma.tree.json.zip 21M  doi:10.5048/BIO-C.2018.3.513
OrthoDB database inferred dependency graph. orthos.graph.json.zip 3.0M  doi:10.5048/BIO-C.2018.3.514
OrthoDB database adjusted ancestry tree. orthos.tree.json.zip 4.9M  doi:10.5048/BIO-C.2018.3.515
Pfam database inferred dependency graph. pfam.graph.json.zip 2.9M  doi:10.5048/BIO-C.2018.3.516
Pfam database adjusted ancestry tree. pfam.tree.json.zip 4.2M  doi:10.5048/BIO-C.2018.3.517
TreeFam database inferred dependency graph. treefam.graph.json 1.8M  doi:10.5048/BIO-C.2018.3.518
TreeFam database adjusted ancestry tree. treefam.tree.json 2.3M  doi:10.5048/BIO-C.2018.3.519
UniRef-50 database inferred dependency graph. uniref-50.graph.json.zip ~ 15M  doi:10.5048/BI0-C.2018.3.520
UniRef-50 database adjusted ancestry tree. uniref-50.tree.json.zip 28M  doi:10.5048/BIO-C.2018.3.521
JavaScript apps inferred dependency graph. js.graph.json 1.3M  doi:10.5048/BIO-C.2018.3.522
JavaScript apps inferred ancestry tree. js.tree.json 2.0M  doi:10.5048/BIO-C.2018.3.523
EvolSimulator dataset 1 inferred dependency graph. evolsiml.graph.json 531K  doi:10.5048/BI0-C.2018.3.524
EvolSimulator dataset 1 inferred ancestry tree. evolsiml.tree.json 755K doi:10.5048/BIO-C.2018.3.525
EvolSimulator dataset 2 inferred dependency graph. evolsim2.graph.json 386K  doi:10.5048/BIO-C.2018.3.526
EvolSimulator dataset 2 inferred ancestry tree. evolsim2.tree.json 565K doi:10.5048/BI0-C.2018.3.527
EvolSimulator dataset 3 inferred dependency graph. evolsim3.graph.json 329K  doi:10.5048/BIO-C.2018.3.528
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have been obtained by reading tea leaves, and the logic
would still be valid.

The process of inferring a module is described by
Algorithm 1. The algorithm proceeds by identifying not
yet existing modules that, when added, would increase
the probability of the data taking into account both
the probability of the graph and the probability of the
assignment. For example, consider the module P in
Figure 14. The same set of species have this gene family
as in Figure 13. However, because the gene family is
postulated to be introduced in the module P instead of
module A, it avoids having to be lost multiple times.

The algorithm always postulates modules with ex-
actly two dependent modules (this is a limitation of the
algorithm, not the model). If the two modules already
share a dependency, that dependency is moved to the
newly created module. For example, if modules F and J
were the dependents of a new module, the new module
would depend on P, and F and J would no longer depend
on P. The new module must have more species transi-
tively dependent on it than either dependant by itself.
For example, this rules out a module with dependants M
and P. The new module would have the same dependent
species as module P, and thus would be redundant.

When postulating a new module, we have to deter-
mine which gene families should be moved to that module.
These are called the move-candidate gene families. The
move-candidate gene families for a new module are de-
termined by Algorithm 2. The algorithm determines
which module to attempt adding by counting up the
move-candidate gene families for all current candidate
modules. Since gene families can only be gained once, any
such gene family must be present only in species which
would be dependent on the new module. For example, a
module with dependants F and N cannot have the gene
family depicted in Figure 14 because J would not be a
dependent species. However, a module with dependants
J and C could have the gene family added because all
species with that gene family are dependants of either
module J or C which would in turn be dependants of the
new module. Additionally, moving the gene family to the
new module must be an improvement over its current
module. This is determined by whether the total number
of modules dependent on the new module is less than

The Dependency Graph of Life

the total number of modules dependent on the current
module where the gene family is gained. For example,
in Figure 13 the gene family is present in the root, and
the root has 14 transitively dependent modules. The
new module P has 6, which means that attributing this
gene family to this new module would be an improve-
ment, thus the gene family would be moved. However,
if we started from Figure 14 where module P is already
present and considered a new module with dependants
J and C, the answer would be different. Module P has

5 dependent modules but the newly postulated module
would have 8. Thus moving the gene family would not

be an improvement and it will not be moved.

The algorithm identifies the potential module that
would have the largest number of gene families added to
it. It adds this module and evaluates whether or not the
total probability, taking into account both the probability
of the graph and the probability of the assignment, has
increased. If it has, the module is kept and the algorithm
continues. If it has not, the module is removed and
rejected. The algorithm repeats this process, always
adding the module which will have the largest number
of gene families excluding those modules which have
previously been rejected.

The next stage of the algorithm seeks to simplify the
graph by removing modules as described in Algorithm 3.
To remove a module, all its dependants must be made
to depend directly on its dependencies. For example, if
module D were to be removed, I and H would have to
gain a dependency on B. If F were removed, L and M
would have to gain a dependency on P and C. Any gene
families gained in a module have to be moved to one
of its dependencies. So, if F were being removed, any
gene families gained in F have to be moved either to P
or C. The algorithm considers moving all the gains to
each dependency, and puts them in the one which gives
the highest probability. If F were being removed, any
gene families lost in F must now be lost in both L and
M. Any losses in the removed module have to be pushed
to all of its dependants.

The algorithm alternates between attempting to add
modules and removing them until neither process is able
to find a graph that improves the probability of the data.
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